File size: 12,167 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from dataclasses import dataclass, field
from typing import Optional, Union

from peft.config import PeftConfig
from peft.utils import PeftType


@dataclass
class FourierFTConfig(PeftConfig):
    """
    This is the configuration class to store the configuration of a [`FourierFTModel`].

    Args:
        n_frequency (`int`):
            Num of learnable frequencies for the Discrete Fourier Transform. 'n_frequency' is an integer that is
            greater than 0 and less than or equal to d^2 (assuming the weight W has dimensions of d by d).
            Additionally, it is the number of trainable parameters required to update each delta W weight.
            'n_frequency' will affect the performance and efficiency for PEFT. Specifically, it has little impact on
            training speed, but higher values of it (typically) result in larger GPU memory costs and better accuracy.
            With the same `target_modules`, the number of parameters of LoRA is (2*d*r/n_frequency) times that of
            FourierFT. The following examples of settings regarding 'n_frequency' can be used as reference for users.
            For NLU tasks with the RoBERTa-large model, adopting 'n_frequency': 1000 can almost achieve similar results
            as 'r': 8 in LoRA. At this time, the number of parameters of LoRA is about 16 times that of FourierFT. For
            image classification tasks with Vit-large models, adopting 'n_frequency': 3000 can almost achieve similar
            results as 'r': 16 in LoRA, where the number of parameters of LoRA is about 11 times that of FourierFT.
        scaling (`float`):
            The scaling value for the delta W matrix. This is an important hyperparameter used for scaling, similar to
            the 'lora_alpha' parameter in the LoRA method. 'scaling' can be determined during the hyperparameter search
            process. However, if users want to skip this process, one can refer to the settings in the following
            scenarios. This parameter can be set to 100.0 or 150.0 for both RoBERTa-base and RoBERTa-large models
            across all NLU (GLUE) tasks. This parameter can be set to 300.0 for both LLaMA family models for all
            instruction tuning. This parameter can be set to 300.0 for both ViT-base and ViT-large models across all
            image classification tasks.
        random_loc_seed (`int`):
            Seed for the random location of the frequencies, i.e., the spectral entry matrix.
        target_modules (`Union[list[str],str]`):
            List of module names or regex expression of the module names to replace with FourierFT. For example, ['q',
            'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'. Only linear layers are supported.
        exclude_modules (`Optional[Union[List[str], str]]`):
            The names of the modules to not apply the adapter. When passing a string, a regex match will be performed.
            When passing a list of strings, either an exact match will be performed or it is checked if the name of the
            module ends with any of the passed strings.
        fan_in_fan_out (`bool`):
            Set this to True if the layer to replace stores weight like (fan_in, fan_out).
        bias (`str`):
            Bias type for FourierFT. Can be 'none', 'all' or 'fourier_only'.
        modules_to_save (`list[str]`):
            List of modules apart from FourierFT layers to be set as trainable and saved in the final checkpoint. For
            example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are
            randomly initialized and as such need to be trainable and saved.
        layers_to_transform (`Union[list[int],int]`):
            The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes
            that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at
            this index.
        layers_pattern (`Optional[Union[List[str], str]]`):
            The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is
            not in the common layers pattern. This should target the `nn.ModuleList` of the model, which is often
            called `'layers'` or `'h'`.
        n_frequency_pattern (`dict`):
            The mapping from layer names or regexp expression to n_frequency which are different from the default
            specified. For example, `{model.decoder.layers.0.encoder_attn.k_proj: 1000`}.
        init_weights (`bool`):
            The initialization of the Fourier weights. Set this to False if the spectrum are initialized to a standard
            normal distribution. Set this to True if the spectrum are initialized to zeros.
    """

    n_frequency: int = field(
        default=1000,
        metadata={
            "help": (
                "Num of learnable frequencies for the Discrete Fourier Transform. 'n_frequency' is an integer that is"
                "greater than 0 and less than or equal to d^2 (assuming the weight W has dimensions of d by d)."
                "Additionally, it is the number of trainable parameters required to update each delta W weight."
                "'n_frequency' will affect the performance and efficiency for PEFT. Specifically, it has little impact on"
                "training speed, but higher values of it (typically) result in larger GPU memory costs and better accuracy."
                "With the same `target_modules`, the number of parameters of LoRA is (2*d*r/n_frequency) times that of FourierFT."
                "The following examples of settings regarding 'n_frequency' can be used as reference for users. For NLU"
                "tasks with the RoBERTa-large model, adopting 'n_frequency': 1000 can almost achieve similar results as"
                "'r': 8 in LoRA. At this time, the number of parameters of LoRA is about 16 times that of FourierFT."
                "For image classification tasks with Vit-large models, adopting 'n_frequency': 3000 can almost achieve"
                "similar results as 'r': 16 in LoRA, where the number of parameters of LoRA is about 11 times that of FourierFT."
            )
        },
    )
    scaling: float = field(
        default=150.0,
        metadata={
            "help": (
                "The scaling value for the delta W matrix. This is an important hyperparameter used for scaling, similar to the"
                "'lora_alpha' parameter in the LoRA method. 'scaling' can be determined during the hyperparameter search process."
                "However, if users want to skip this process, one can refer to the settings in the following scenarios."
                "This parameter can be set to 100.0 or 150.0 for both RoBERTa-base and RoBERTa-large models across all NLU (GLUE) tasks."
                "This parameter can be set to 300.0 for both LLaMA family models for all instruction tuning."
                "This parameter can be set to 300.0 for both ViT-base and ViT-large models across all image classification tasks."
            )
        },
    )
    random_loc_seed: Optional[int] = field(
        default=777, metadata={"help": "Seed for the random location of the frequencies."}
    )
    fan_in_fan_out: bool = field(
        default=False,
        metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"},
    )
    target_modules: Optional[Union[list[str], str]] = field(
        default=None,
        metadata={
            "help": (
                "List of module names or regex expression of the module names to replace with FourierFT."
                "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'. "
                "Only linear layers are supported."
            )
        },
    )
    exclude_modules: Optional[Union[list[str], str]] = field(
        default=None,
        metadata={"help": "List of module names or regex expression of the module names to exclude from fourierft."},
    )
    bias: str = field(
        default="none", metadata={"help": "Bias type for FourierFT. Can be 'none', 'all' or 'fourier_only'."}
    )
    modules_to_save: Optional[list[str]] = field(
        default=None,
        metadata={
            "help": (
                "List of modules apart from FourierFT layers to be set as trainable and saved in the final checkpoint. For"
                " example, in Sequence Classification or Token Classification tasks, the final layer"
                " `classifier/score` are randomly initialized and as such need to be trainable and saved."
            )
        },
    )
    layers_to_transform: Optional[Union[list[int], int]] = field(
        default=None,
        metadata={
            "help": (
                "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers"
                " indexes that are specified inside this list. If a single integer is passed, PEFT will transform only"
                " the layer at this index."
            )
        },
    )
    layers_pattern: Optional[Union[list[str], str]] = field(
        default=None,
        metadata={
            "help": (
                "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer"
                " pattern is not in the common layers pattern. This should target the `nn.ModuleList` of the "
                "model, which is often called `'layers'` or `'h'`."
            )
        },
    )
    n_frequency_pattern: Optional[dict] = field(
        default_factory=dict,
        metadata={
            "help": (
                "The mapping from layer names or regexp expression to n_frequency which are different from the default specified."
                "For example, `{model.decoder.layers.0.encoder_attn.k_proj: 500`}."
            )
        },
    )
    init_weights: bool = field(
        default=False,
        metadata={
            "help": (
                "The initialization of the Fourier weights. Set this to False if the spectrum should be initialized to a standard normal distribution."
                "Set this to True if the spectrum should be initialized to zeros."
            )
        },
    )

    def __post_init__(self):
        super().__post_init__()
        self.peft_type = PeftType.FOURIERFT
        self.target_modules = (
            set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules
        )
        self.exclude_modules = (
            set(self.exclude_modules) if isinstance(self.exclude_modules, list) else self.exclude_modules
        )
        # if target_modules is a regex expression, then layers_to_transform should be None
        if isinstance(self.target_modules, str) and self.layers_to_transform is not None:
            raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.")

        # if target_modules is a regex expression, then layers_pattern should be None
        if isinstance(self.target_modules, str) and self.layers_pattern is not None:
            raise ValueError("`layers_pattern` cannot be used when `target_modules` is a str.")
        # check for layers_to_transform and layers_pattern
        if self.layers_pattern and not self.layers_to_transform:
            raise ValueError("When `layers_pattern` is specified, `layers_to_transform` must also be specified. ")