|
import pandas as pd |
|
import numpy as np |
|
|
|
PAGE_MARKDOWN = """ |
|
<style> |
|
.reportview-container { |
|
margin-top: -2em; |
|
} |
|
#MainMenu {visibility: hidden;} |
|
.stDeployButton {display:none;} |
|
footer {visibility: hidden;} |
|
#stDecoration {display:none;} |
|
</style> |
|
""" |
|
|
|
PAGE_INFO = """[](https://huggingface.co/datasets/booydar/babilong) | [GitHub](https://github.com/booydar/babilong) | [Paper](https://arxiv.org/abs/2406.10149) | [HF Dataset](https://huggingface.co/datasets/booydar/babilong) | [HF Dataset 1k samples per task](https://huggingface.co/datasets/RMT-team/babilong-1k-samples) |""" |
|
|
|
LENGTHS = ['0k', '1k', '2k', '4k', '8k', '16k', '32k', '64k', '128k', '512k', '1M', '2M'] |
|
LENGTHS_32k = ['0k', '1k', '2k', '4k', '8k', '16k', '32k'] |
|
LENGTHS_128k = ['0k', '1k', '2k', '4k', '8k', '16k', '32k', '64k', '128k'] |
|
|
|
|
|
def load_results(): |
|
old_results_path = "data/leaderboard-v0_results.csv" |
|
new_results_path = "babilong/babilong_results/all_results.csv" |
|
old_results = pd.read_csv(old_results_path) |
|
new_results = pd.read_csv(new_results_path) |
|
|
|
res = pd.concat([old_results, new_results]) |
|
res.replace(-1, np.nan, inplace=True) |
|
res['avg(32k)'] = res[LENGTHS_32k].mean(axis=1) |
|
res['avg(128k)'] = res[LENGTHS_128k].mean(axis=1) |
|
res.sort_values(['avg(128k)'], ascending=False, inplace=True) |
|
|
|
return res |
|
|
|
|
|
def style_dataframe(df): |
|
""" |
|
Style a pandas DataFrame with a color gradient. |
|
""" |
|
styled_df = df.copy() |
|
numeric_columns = styled_df.columns[1:] |
|
|
|
def color_scale(val): |
|
if pd.isna(val): |
|
return 'background-color: white; color: white' |
|
min_val = 0 |
|
max_val = 100 |
|
normalized = (val - min_val) / (max_val - min_val) if max_val > min_val else 0.5 |
|
r = int(255 * (1 - normalized) + 144 * normalized) |
|
g = int(204 * (1 - normalized) + 238 * normalized) |
|
b = int(204 * (1 - normalized) + 180 * normalized) |
|
return f'background-color: rgb({r}, {g}, {b})' |
|
|
|
styled = styled_df.style.map(color_scale, subset=numeric_columns) |
|
return styled |
|
|