--- title: RAGTesting emoji: 💬 colorFrom: yellow colorTo: purple sdk: gradio sdk_version: 5.0.1 app_file: app.py pinned: false license: mit short_description: A simple RAG demo --- # Mini RAG Demo – Retrieval-Augmented Generation on Wikipedia This is a lightweight Retrieval-Augmented Generation (RAG) app built with Gradio. It combines semantic search over a mini Wikipedia (`rag-datasets/rag-mini-wikipedia`) corpus with reranking and language generation to answer natural language questions using real documents. --- ## What It Does - Embeds a query using a SentenceTransformer (`all-MiniLM-L6-v2`) - Retrieves the top-5 most semantically similar Wikipedia passages using FAISS - Reranks them using a CrossEncoder model (`cross-encoder/ms-marco-MiniLM-L-6-v2`) - Generates an answer using a Hugging Face language model --- ## Tech Stack - **Gradio** – Web interface - **FAISS** – Fast dense vector retrieval - **Sentence-Transformers** – Embedding & reranking - **Transformers (Hugging Face)** – Language model for generation - **Hugging Face Datasets** – Mini Wikipedia corpus (`rag-datasets/rag-mini-wikipedia`) --- ## Models Used | Purpose | Model | |---------------|---------------------------------------------| | Embedding | `all-MiniLM-L6-v2` | | Reranking | `cross-encoder/ms-marco-MiniLM-L-6-v2` | | Generation | `mistralai/Mistral-7B-Instruct-v0.2` *(optional)* or a smaller model | --- ## 📦 Running Locally To run the app locally: ```bash git clone https://huggingface.co/spaces/YOUR_USERNAME/mini-rag-demo cd mini-rag-demo pip install -r requirements.txt python app.py ```