InferBench / app.py
davidberenstein1957's picture
refactor: update column names in app.py to replace 'Model Owner' with 'Owner', improving clarity and consistency in data representation
d0765d4
import json
from pathlib import Path
import gradio as gr
import pandas as pd
from gradio_leaderboard import Leaderboard
from assets import custom_css
# override method to avoid bugg
Leaderboard.raise_error_if_incorrect_config = lambda self: None
abs_path = Path(__file__).parent / "data"
# Load the JSONL file into a pandas DataFrame using the json library
with open(abs_path / "text_to_image.jsonl", "r") as file:
json_data = file.read()
partially_fixed_json_data = json_data.replace("}\n{", "},\n{")
fixed_json_data = f"[{partially_fixed_json_data}]"
json_data = json.loads(fixed_json_data)
df = pd.DataFrame(json_data)
df["URL"] = df.apply(
lambda row: f'<a target="_blank" href="{row["URL"]}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">link</a>',
axis=1,
)
df = df[
["URL", "Platform", "Owner", "Device", "Model", "Optimization", "Median Inference Time", "Price per Image"]
+ [
col
for col in df.columns.tolist()
if col
not in [
"URL",
"Model",
"Median Inference Time",
"Price per Image",
"Platform",
"Owner",
"Device",
"Optimization",
]
]
]
df = df.sort_values(by="GenEval", ascending=False)
with gr.Blocks("ParityError/Interstellar", fill_width=True, css=custom_css) as demo:
gr.HTML(
"""
<div style="text-align: center;">
<img src="https://huggingface.co/datasets/PrunaAI/documentation-images/resolve/main/inferbench/logo2-cropped.png" style="width: 200px; height: auto; max-width: 100%; margin: 0 auto;">
<h1>🏋️ InferBench 🏋️</h1>
<h2>A cost/quality/speed Leaderboard for Inference Providers!</h2>
</div>
"""
)
with gr.Tabs():
with gr.TabItem("Text-to-Image Leaderboard"):
Leaderboard(
value=df,
select_columns=df.columns.tolist(),
datatype=["markdown", "markdown", "markdown", "markdown", "markdown", "markdown"]
+ ["number"] * (len(df.columns.tolist()) - 6),
filter_columns=[
"Platform",
"Owner",
"Device",
"Model",
"Optimization",
],
)
gr.Markdown(
"""
> **💡 Note:** Each efficiency metric and quality metric captures only one dimension of model capacity. Rankings may vary when considering other metrics.
"""
)
with gr.TabItem("About"):
with gr.Row():
with gr.Column():
gr.Markdown(
"""
# 📊 Text-to-Image Leaderboard
This leaderboard compares the performance of different text-to-image providers.
We started with a comprehensive benchmark comparing our very own FLUX-juiced with the “FLUX.1 [dev]” endpoints offered by:
- Replicate: https://replicate.com/black-forest-labs/flux-dev
- Fal: https://fal.ai/models/fal-ai/flux/dev
- Fireworks AI: https://fireworks.ai/models/fireworks/flux-1-dev-fp8
- Together AI: https://www.together.ai/models/flux-1-dev
We also included the following non-FLUX providers:
- AWS Nova Canvas: https://aws.amazon.com/ai/generative-ai/nova/creative/
All of these inference providers offer implementations but they don’t always communicate about the optimisation methods used in the background, and most endpoint have different response times and performance measures.
For comparison purposes we used the same generation set-up for all the providers.
- 28 inference steps
- 1024×1024 resolution
- Guidance scale of 3.5
- H100 GPU (80GB)—only reported by Replicate
Although we did test with this specific Pruna configuration and hardware, the applied compression methods work with different config and hardware too!
> We published a full blog post on [the creation of our FLUX-juiced endpoint](https://www.pruna.ai/blog/flux-juiced-the-fastest-image-generation-endpoint).
"""
)
with gr.Column():
gr.Markdown(
"""
# 🧃 FLUX.1-dev (juiced)
FLUX.1-dev (juiced) is our optimized version of FLUX.1-dev, delivering up to **2.6x faster inference** than the official Replicate API, **without sacrificing image quality**.
Under the hood, it uses a custom combination of:
- **Graph compilation** for optimized execution paths
- **Inference-time caching** for repeated operations
We won’t go deep into the internals here, but here’s the gist:
> We combine compiler-level execution graph optimization with selective caching of heavy operations (like attention layers), allowing inference to skip redundant computations without any loss in fidelity.
These techniques are generalized and plug-and-play via the **Pruna Pro** pipeline, and can be applied to nearly any diffusion-based image model—not just FLUX. For a free but still very juicy model you can use our open source solution.
> 🧪 Try FLUX-juiced now → [replicate.com/prunaai/flux.1-juiced](https://replicate.com/prunaai/flux.1-juiced)
## Sample Images
The prompts were randomly sampled from the [parti-prompts dataset](https://github.com/google-research/parti). The reported times represent the full duration of each API call.
> **For samples, check out the [Pruna Notion page](https://pruna.notion.site/FLUX-1-dev-vs-Pruna-s-FLUX-juiced-1d270a039e5f80c6a2a3c00fc0d75ef0)**
"""
)
with gr.Accordion("🌍 Join the Pruna AI community!", open=False):
gr.HTML(
"""
<a rel="nofollow" href="https://twitter.com/PrunaAI"><img alt="Twitter" src="https://img.shields.io/twitter/follow/PrunaAI?style=social"></a>
<a rel="nofollow" href="https://github.com/PrunaAI/pruna"><img alt="GitHub" src="https://img.shields.io/github/stars/prunaai/pruna"></a>
<a rel="nofollow" href="https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following"><img alt="LinkedIn" src="https://img.shields.io/badge/LinkedIn-Connect-blue"></a>
<a rel="nofollow" href="https://discord.com/invite/rskEr4BZJx"><img alt="Discord" src="https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&amp;logo=discord"></a>
<a rel="nofollow" href="https://www.reddit.com/r/PrunaAI/"><img alt="Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/PrunaAI?style=social"></a>
"""
)
with gr.Accordion("Citation", open=True):
gr.Markdown(
"""
```bibtex
@article{InferBench,
title={InferBench: A Leaderboard for Inference Providers},
author={PrunaAI},
year={2025},
howpublished={\\url{https://huggingface.co/spaces/PrunaAI/InferBench}}
}
```
"""
)
if __name__ == "__main__":
demo.launch()