import gradio as gr import numpy as np import pandas as pd import torch import matplotlib.pyplot as plt import json import time import os from functools import partial import datetime import plotly.graph_objects as go from plotly.subplots import make_subplots # Global variables to store models tokenizer = None ner_pipeline = None pos_pipeline = None intent_classifier = None semantic_model = None stt_model = None # Speech-to-text model models_loaded = False # Database to store keyword ranking history (in-memory database for this example) # In a real app, you would use a proper database ranking_history = {} def load_models(progress=gr.Progress()): """Lazy-load models only when needed""" global tokenizer, ner_pipeline, pos_pipeline, intent_classifier, semantic_model, stt_model, models_loaded if models_loaded: return True try: progress(0.1, desc="Loading models...") # Use smaller models and load them sequentially to reduce memory pressure from transformers import AutoTokenizer, pipeline progress(0.2, desc="Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") progress(0.3, desc="Loading NER model...") ner_pipeline = pipeline("ner", model="dslim/bert-base-NER") progress(0.4, desc="Loading POS model...") # Use smaller POS model from transformers import AutoModelForTokenClassification, BertTokenizerFast pos_model = AutoModelForTokenClassification.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos") pos_tokenizer = BertTokenizerFast.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos") pos_pipeline = pipeline("token-classification", model=pos_model, tokenizer=pos_tokenizer) progress(0.6, desc="Loading intent classifier...") # Use a smaller model for zero-shot classification intent_classifier = pipeline( "zero-shot-classification", model="typeform/distilbert-base-uncased-mnli", # Smaller than BART device=0 if torch.cuda.is_available() else -1 # Use GPU if available ) progress(0.7, desc="Loading speech-to-text model...") try: # Load automatic speech recognition model from transformers import WhisperProcessor, WhisperForConditionalGeneration processor = WhisperProcessor.from_pretrained("openai/whisper-small.en") stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small.en") stt_model = (processor, stt_model) except Exception as e: print(f"Warning: Could not load speech-to-text model: {str(e)}") stt_model = None # Set to None so we can check if it's available progress(0.8, desc="Loading semantic model...") try: from sentence_transformers import SentenceTransformer semantic_model = SentenceTransformer('all-MiniLM-L6-v2') except Exception as e: print(f"Warning: Could not load semantic model: {str(e)}") semantic_model = None # Set to None so we can check if it's available progress(1.0, desc="Models loaded successfully!") models_loaded = True return True except Exception as e: print(f"Error loading models: {str(e)}") return f"Error: {str(e)}" def speech_to_text(audio_path): """Convert speech to text using the loaded speech-to-text model""" if stt_model is None: return "Speech-to-text model not loaded. Please try text input instead." try: import librosa import numpy as np # Load audio file audio, sr = librosa.load(audio_path, sr=16000) # Process audio with Whisper processor, model = stt_model input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features # Generate token ids predicted_ids = model.generate(input_features) # Decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription except Exception as e: print(f"Error in speech_to_text: {str(e)}") return f"Error processing speech: {str(e)}" def handle_voice_input(audio): """Handle voice input and convert to text""" if audio is None: return "No audio detected. Please try again." try: # Convert speech to text text = speech_to_text(audio) return text except Exception as e: print(f"Error in handle_voice_input: {str(e)}") return f"Error: {str(e)}" def simulate_google_serp(keyword, num_results=10): """Simulate Google SERP results for a keyword""" try: # In a real implementation, this would call the Google API # For now, we'll generate fake SERP data # Deterministic seed for consistent results by keyword np.random.seed(sum(ord(c) for c in keyword)) serp_results = [] domains = [ "example.com", "wikipedia.org", "medium.com", "github.com", "stackoverflow.com", "amazon.com", "youtube.com", "reddit.com", "linkedin.com", "twitter.com", "facebook.com", "instagram.com" ] for i in range(1, num_results + 1): domain = domains[i % len(domains)] title = f"{keyword.title()} - {domain.split('.')[0].title()} Resource #{i}" snippet = f"This is a simulated SERP result for '{keyword}'. Result #{i} would provide relevant information about this topic." url = f"https://www.{domain}/{keyword.replace(' ', '-')}-resource-{i}" position = i ctr = round(0.3 * (0.85 ** (i - 1)), 4) # Simulate click-through rate decay serp_results.append({ "position": position, "title": title, "url": url, "domain": domain, "snippet": snippet, "ctr_estimate": ctr, "impressions_estimate": np.random.randint(1000, 10000) }) return serp_results except Exception as e: print(f"Error in simulate_google_serp: {str(e)}") return [] def update_ranking_history(keyword, serp_results): """Update the ranking history for a keyword""" try: # Get current timestamp timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") # Initialize if keyword not in history if keyword not in ranking_history: ranking_history[keyword] = [] # Add new entry ranking_history[keyword].append({ "timestamp": timestamp, "results": serp_results[:5] # Store top 5 results for history }) # Keep only last 10 entries for each keyword if len(ranking_history[keyword]) > 10: ranking_history[keyword] = ranking_history[keyword][-10:] return True except Exception as e: print(f"Error in update_ranking_history: {str(e)}") return False def get_semantic_similarity(token, comparison_terms): """Calculate semantic similarity between a token and comparison terms""" try: from sklearn.metrics.pairwise import cosine_similarity token_embedding = semantic_model.encode([token])[0] comparison_embeddings = semantic_model.encode(comparison_terms) similarities = [] for i, emb in enumerate(comparison_embeddings): similarity = cosine_similarity([token_embedding], [emb])[0][0] similarities.append((comparison_terms[i], float(similarity))) return sorted(similarities, key=lambda x: x[1], reverse=True) except Exception as e: print(f"Error in semantic similarity: {str(e)}") # Return dummy data on error return [(term, 0.5) for term in comparison_terms] def get_token_colors(token_type): colors = { "prefix": "#D8BFD8", # Light purple "suffix": "#AEDAA4", # Light green "stem": "#A4C2F4", # Light blue "compound_first": "#FFCC80", # Light orange "compound_second": "#FFCC80", # Light orange "word": "#E5E5E5" # Light gray } return colors.get(token_type, "#E5E5E5") def simulate_historical_data(token): """Generate simulated historical usage data for a token""" eras = ["1900s", "1950s", "1980s", "2000s", "2010s", "Present"] # Different patterns based on token characteristics if len(token) > 8: # Possibly a technical term - recent growth values = [10, 20, 30, 60, 85, 95] elif token.startswith(("un", "re", "de", "pre")): # Prefix words tend to be older values = [45, 50, 60, 70, 75, 80] else: # Standard pattern for common words # Use token hash value modulo instead of hash() directly to avoid different results across runs base = 50 + (sum(ord(c) for c in token) % 30) # Use a fixed seed for reproducibility np.random.seed(sum(ord(c) for c in token)) noise = np.random.normal(0, 5, 6) values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)] return list(zip(eras, values)) def generate_origin_data(token): """Generate simulated origin/etymology data for a token""" origins = [ {"era": "Ancient", "language": "Latin"}, {"era": "Ancient", "language": "Greek"}, {"era": "Medieval", "language": "Old English"}, {"era": "16th century", "language": "French"}, {"era": "18th century", "language": "Germanic"}, {"era": "19th century", "language": "Anglo-Saxon"}, {"era": "20th century", "language": "Modern English"} ] # Deterministic selection based on the token index = sum(ord(c) for c in token) % len(origins) origin = origins[index] note = f"First appeared in {origin['era']} texts derived from {origin['language']}." origin["note"] = note return origin def analyze_token_types(tokens): """Identify token types (prefix, suffix, compound, etc.)""" processed_tokens = [] prefixes = ["un", "re", "de", "pre", "post", "anti", "pro", "inter", "sub", "super"] suffixes = ["ing", "ed", "ly", "ment", "tion", "able", "ible", "ness", "ful", "less"] for token in tokens: token_text = token.lower() token_type = "word" # Check for prefixes for prefix in prefixes: if token_text.startswith(prefix) and len(token_text) > len(prefix) + 2: if token_text != prefix: # Make sure the word isn't just the prefix token_type = "prefix" break # Check for suffixes if token_type == "word": for suffix in suffixes: if token_text.endswith(suffix) and len(token_text) > len(suffix) + 2: token_type = "suffix" break # Check for compound words (simplified) if token_type == "word" and len(token_text) > 8: token_type = "compound_first" # Simplified - in reality would need more analysis processed_tokens.append({ "text": token_text, "type": token_type }) return processed_tokens def plot_historical_data(historical_data): """Create a plot of historical usage data, with error handling""" try: eras = [item[0] for item in historical_data] values = [item[1] for item in historical_data] plt.figure(figsize=(8, 3)) plt.bar(eras, values, color='skyblue') plt.title('Historical Usage') plt.xlabel('Era') plt.ylabel('Usage Level') plt.ylim(0, 100) plt.xticks(rotation=45) plt.tight_layout() return plt except Exception as e: print(f"Error in plot_historical_data: {str(e)}") # Return a simple error plot plt.figure(figsize=(8, 3)) plt.text(0.5, 0.5, f"Error creating plot: {str(e)}", horizontalalignment='center', verticalalignment='center') plt.axis('off') return plt def create_evolution_chart(data, forecast_months=6, growth_scenario="Moderate"): """Create a simpler chart that's more compatible with Gradio""" try: import plotly.graph_objects as go # Create a basic figure without subplots fig = go.Figure() # Add main trace for search volume fig.add_trace( go.Scatter( x=[item["month"] for item in data], y=[item["searchVolume"] for item in data], name="Search Volume", line=dict(color="#8884d8", width=3), mode="lines+markers" ) ) # Scale the other metrics to be visible on the same chart max_volume = max([item["searchVolume"] for item in data]) scale_factor = max_volume / 100 # Add competition score (scaled) fig.add_trace( go.Scatter( x=[item["month"] for item in data], y=[item["competitionScore"] * scale_factor for item in data], name="Competition Score", line=dict(color="#82ca9d", width=2, dash="dot"), mode="lines+markers" ) ) # Add intent clarity (scaled) fig.add_trace( go.Scatter( x=[item["month"] for item in data], y=[item["intentClarity"] * scale_factor for item in data], name="Intent Clarity", line=dict(color="#ffc658", width=2, dash="dash"), mode="lines+markers" ) ) # Simple layout fig.update_layout( title=f"Keyword Evolution Forecast ({growth_scenario} Growth)", xaxis_title="Month", yaxis_title="Value", legend=dict(orientation="h", y=1.1), height=500 ) return fig except Exception as e: print(f"Error in chart creation: {str(e)}") # Fallback to an even simpler chart fig = go.Figure(data=go.Scatter(x=[1, 2, 3], y=[4, 1, 2])) fig.update_layout(title="Fallback Chart (Error occurred)") return fig def create_ranking_history_chart(keyword_history): """Create a chart showing keyword ranking history over time""" try: if not keyword_history or len(keyword_history) < 2: # Not enough data for a meaningful chart fig = go.Figure() fig.update_layout( title="Insufficient Ranking Data", annotations=[{ "text": "Need at least 2 data points for ranking history", "showarrow": False, "font": {"size": 16}, "xref": "paper", "yref": "paper", "x": 0.5, "y": 0.5 }] ) return fig # Create a figure fig = go.Figure() # Extract timestamps and convert to datetime objects timestamps = [entry["timestamp"] for entry in keyword_history] dates = [datetime.datetime.strptime(ts, "%Y-%m-%d %H:%M:%S") for ts in timestamps] # Get unique domains from all results all_domains = set() for entry in keyword_history: for result in entry["results"]: all_domains.add(result["domain"]) # Colors for different domains domain_colors = {} color_palette = [ "#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf" ] for i, domain in enumerate(all_domains): domain_colors[domain] = color_palette[i % len(color_palette)] # Track domains and their positions over time domain_tracking = {domain: {"x": [], "y": [], "text": []} for domain in all_domains} for i, entry in enumerate(keyword_history): for result in entry["results"]: domain = result["domain"] position = result["position"] title = result["title"] domain_tracking[domain]["x"].append(dates[i]) domain_tracking[domain]["y"].append(position) domain_tracking[domain]["text"].append(title) # Add traces for each domain for domain, data in domain_tracking.items(): if len(data["x"]) > 0: # Only add domains that have data fig.add_trace( go.Scatter( x=data["x"], y=data["y"], mode="lines+markers", name=domain, line=dict(color=domain_colors[domain]), hovertemplate="%{text}
Position: %{y}
Date: %{x}", text=data["text"], marker=dict(size=8) ) ) # Update layout fig.update_layout( title="Keyword Ranking History", xaxis_title="Date", yaxis_title="Position", yaxis=dict(autorange="reversed"), # Invert y-axis so position 1 is on top hovermode="closest", height=500 ) return fig except Exception as e: print(f"Error in create_ranking_history_chart: {str(e)}") # Return fallback chart fig = go.Figure() fig.update_layout( title="Error Creating Ranking Chart", annotations=[{ "text": f"Error: {str(e)}", "showarrow": False, "font": {"size": 14}, "xref": "paper", "yref": "paper", "x": 0.5, "y": 0.5 }] ) return fig def generate_serp_html(keyword, serp_results): """Generate HTML for SERP results""" if not serp_results: return "
No SERP results available
" html = f"""

SERP Results for "{keyword}"

This is a simulated SERP. In a real application, this would use the Google API.
""" for result in serp_results: position = result["position"] title = result["title"] url = result["url"] snippet = result["snippet"] domain = result["domain"] ctr = result["ctr_estimate"] impressions = result["impressions_estimate"] html += f"""
{position}
{title}
{url}
{snippet}
CTR: {ctr:.2%}
Est. Impressions: {impressions:,}
""" html += """
""" return html def generate_token_visualization_html(token_analysis, full_analysis): """Generate HTML for token visualization""" html = """

Token Visualization

Human View:
""" # Add human view tokens for token in token_analysis: html += f"""
{token['text']}
""" html += """
Machine View:
""" # Add machine view tokens for token in full_analysis: bg_color = get_token_colors(token["type"]) html += f"""
{token['token']} {token['type']}
""" html += """
""" # Add stats word_count = len(token_analysis) token_count = len(full_analysis) ratio = round(token_count / max(1, word_count), 2) html += f"""
{word_count}
Words
{token_count}
Tokens
{ratio}
Tokens per Word
""" html += """
""" return html def generate_full_analysis_html(keyword, token_analysis, intent_analysis, evolution_potential, trends): """Generate HTML for full keyword analysis""" html = f"""

Keyword DNA Analysis for: {keyword}

Intent Gene

Type: {intent_analysis['type']}
Strength:

Evolution Potential

{evolution_potential}

Future Mutations

""" # Add trends for trend in trends: html += f"""
{trend}
""" html += """

Token Details & Historical Analysis

""" # Add token details for token in token_analysis: html += f"""
{token['token']} {token['posTag']} """ if token['entityType']: html += f""" ⓘ {token['entityType']} """ html += f"""
Importance:
Historical Relevance:
Origin: {token['origin']['era']}, {token['origin']['language']}
{token['origin']['note']}
""" # Add historical data bars for period, value in token['historicalData']: opacity = 0.3 + (token['historicalData'].index((period, value)) * 0.1) html += f"""
{period}
""" html += """
""" html += """
""" return html def analyze_keyword(keyword, forecast_months=6, growth_scenario="Moderate", get_serp=False, progress=gr.Progress()): """Main function to analyze a keyword""" if not keyword or not keyword.strip(): return ( "
Please enter a keyword to analyze
", "
Please enter a keyword to analyze
", None, None, None, None, None ) progress(0.1, desc="Starting analysis...") # Load models if not already loaded model_status = load_models(progress) if isinstance(model_status, str) and model_status.startswith("Error"): return ( f"
{model_status}
", f"
{model_status}
", None, None, None, None, None ) try: # Basic tokenization - just split on spaces for simplicity words = keyword.strip().lower().split() progress(0.2, desc="Analyzing tokens...") # Get token types token_analysis = analyze_token_types(words) progress(0.3, desc="Running NER...") # Get NER tags - handle potential errors try: ner_results = ner_pipeline(keyword) except Exception as e: print(f"NER error: {str(e)}") ner_results = [] progress(0.4, desc="Running POS tagging...") # Get POS tags - handle potential errors try: pos_results = pos_pipeline(keyword) except Exception as e: print(f"POS error: {str(e)}") pos_results = [] # Process and organize results full_token_analysis = [] for token in token_analysis: # Find POS tag for this token pos_tag = "NOUN" # Default for pos_result in pos_results: if pos_result["word"].lower() == token["text"]: pos_tag = pos_result["entity"] break # Find entity type if any entity_type = None for ner_result in ner_results: if ner_result["word"].lower() == token["text"]: entity_type = ner_result["entity"] break # Generate historical data historical_data = simulate_historical_data(token["text"]) # Generate origin data origin = generate_origin_data(token["text"]) # Calculate importance (simplified algorithm) importance = 60 + (len(token["text"]) * 2) importance = min(95, importance) # Generate more meaningful related terms using semantic similarity if semantic_model is not None: try: # Generate some potential related terms prefix_related = [f"about {token['text']}", f"what is {token['text']}", f"how to {token['text']}"] synonym_candidates = ["similar", "equivalent", "comparable", "like", "related", "alternative"] domain_terms = ["software", "marketing", "business", "science", "education", "technology"] comparison_terms = prefix_related + synonym_candidates + domain_terms # Get similarities similarities = get_semantic_similarity(token['text'], comparison_terms) # Use top 3 most similar terms related_terms = [term for term, score in similarities[:3]] except Exception as e: print(f"Error generating semantic related terms: {str(e)}") related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"] else: # Fallback if semantic model isn't loaded related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"] full_token_analysis.append({ "token": token["text"], "type": token["type"], "posTag": pos_tag, "entityType": entity_type, "importance": importance, "historicalData": historical_data, "origin": origin, "relatedTerms": related_terms }) progress(0.5, desc="Analyzing intent...") # Intent analysis - handle potential errors try: intent_result = intent_classifier( keyword, candidate_labels=["informational", "navigational", "transactional"] ) intent_analysis = { "type": intent_result["labels"][0].capitalize(), "strength": round(intent_result["scores"][0] * 100), "mutations": [ f"{intent_result['labels'][0]}-variation-1", f"{intent_result['labels'][0]}-variation-2" ] } except Exception as e: print(f"Intent classification error: {str(e)}") intent_analysis = { "type": "Informational", # Default fallback "strength": 70, "mutations": ["fallback-variation-1", "fallback-variation-2"] } # Evolution potential (simplified calculation) evolution_potential = min(95, 65 + (len(keyword) % 30)) # Predicted trends (simplified) trends = [ "Voice search adaptation", "Visual search integration" ] # Generate more realistic and keyword-specific evolution data base_volume = 1000 + (len(keyword) * 100) # Adjust growth factor based on scenario if growth_scenario == "Conservative": growth_factor = 1.05 + (0.02 * (sum(ord(c) for c in keyword) % 5)) elif growth_scenario == "Aggressive": growth_factor = 1.15 + (0.05 * (sum(ord(c) for c in keyword) % 5)) else: # Moderate growth_factor = 1.1 + (0.03 * (sum(ord(c) for c in keyword) % 5)) evolution_data = [] months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"][:int(forecast_months)] current_volume = base_volume for month in months: # Add some randomness to make it look more realistic np.random.seed(sum(ord(c) for c in month + keyword)) random_factor = 0.9 + (0.2 * np.random.random()) current_volume *= growth_factor * random_factor evolution_data.append({ "month": month, "searchVolume": int(current_volume), "competitionScore": min(95, 45 + (months.index(month) * 3) + (sum(ord(c) for c in keyword) % 10)), "intentClarity": min(95, 80 + (months.index(month) * 2) + (sum(ord(c) for c in keyword) % 5)) }) progress(0.6, desc="Creating visualizations...") # Create interactive evolution chart evolution_chart = create_evolution_chart(evolution_data, forecast_months, growth_scenario) # SERP results and ranking history (new feature) serp_results = None ranking_chart = None serp_html = None if get_serp: progress(0.7, desc="Fetching SERP data...") # Get SERP results serp_results = simulate_google_serp(keyword) # Update ranking history update_ranking_history(keyword, serp_results) progress(0.8, desc="Creating ranking charts...") # Create ranking history chart if keyword in ranking_history and len(ranking_history[keyword]) > 0: ranking_chart = create_ranking_history_chart(ranking_history[keyword]) # Generate SERP HTML serp_html = generate_serp_html(keyword, serp_results) # Generate HTML for token visualization token_viz_html = generate_token_visualization_html(token_analysis, full_token_analysis) # Generate HTML for full analysis analysis_html = generate_full_analysis_html( keyword, full_token_analysis, intent_analysis, evolution_potential, trends ) # Generate JSON results json_results = { "keyword": keyword, "tokenAnalysis": full_token_analysis, "intentAnalysis": intent_analysis, "evolutionPotential": evolution_potential, "predictedTrends": trends, "forecast": { "months": forecast_months, "scenario": growth_scenario, "data": evolution_data }, "serpResults": serp_results } progress(1.0, desc="Analysis complete!") return token_viz_html, analysis_html, json_results, evolution_chart, serp_html, ranking_chart, keyword except Exception as e: error_message = f"
Error analyzing keyword: {str(e)}
" print(f"Error in analyze_keyword: {str(e)}") return error_message, error_message, None, None, None, None, None # Create the Gradio interface with gr.Blocks(css="footer {visibility: hidden}") as demo: gr.Markdown("# Keyword DNA Analyzer") gr.Markdown("Analyze the linguistic DNA of your keywords to understand their structure, intent, and potential.") with gr.Row(): with gr.Column(scale=1): # Add voice search capabilities with gr.Group(): gr.Markdown("### Enter Keyword") with gr.Row(): input_text = gr.Textbox(label="Enter keyword to analyze", placeholder="e.g. artificial intelligence") with gr.Row(): audio_input = gr.Audio(type="filepath", label="Or use voice search") voice_submit_btn = gr.Button("Convert Voice to Text", variant="secondary") # Add SERP settings with gr.Accordion("Analysis Settings", open=False): with gr.Row(): forecast_months = gr.Slider(minimum=3, maximum=12, value=6, step=1, label="Forecast Months") include_serp = gr.Checkbox(label="Include SERP Analysis", value=True) growth_scenario = gr.Radio( ["Conservative", "Moderate", "Aggressive"], value="Moderate", label="Growth Scenario" ) # Add loading indicator status_html = gr.HTML('
Enter a keyword and click "Analyze DNA"
') analyze_btn = gr.Button("Analyze DNA", variant="primary") with gr.Row(): example_btns = [] for example in ["preprocessing", "breakdown", "artificial intelligence", "transformer model", "machine learning"]: example_btns.append(gr.Button(example)) with gr.Column(scale=2): with gr.Tabs(): with gr.Tab("Token Visualization"): token_viz_html = gr.HTML() with gr.Tab("Full Analysis"): analysis_html = gr.HTML() with gr.Tab("Evolution Chart"): evolution_chart = gr.Plot(label="Keyword Evolution Forecast") with gr.Tab("SERP Results"): serp_html = gr.HTML() with gr.Tab("Ranking History"): ranking_chart = gr.Plot(label="Keyword Ranking History") with gr.Tab("Raw Data"): json_output = gr.JSON() # Voice to text conversion handler voice_submit_btn.click( handle_voice_input, inputs=[audio_input], outputs=[input_text] ) # Set up event handlers analyze_btn.click( lambda: '
Loading models and analyzing... This may take a moment.
', outputs=status_html ).then( analyze_keyword, inputs=[input_text, forecast_months, growth_scenario, include_serp], outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text] ).then( lambda: '
Analysis complete!
', outputs=status_html ) # Example buttons for btn in example_btns: # Define the function that will be called when an example button is clicked def set_example(btn_label): return btn_label btn.click( set_example, inputs=[btn], outputs=[input_text] ).then( lambda: '
Loading models and analyzing... This may take a moment.
', outputs=status_html ).then( analyze_keyword, inputs=[input_text, forecast_months, growth_scenario, include_serp], outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text] ).then( lambda: '
Analysis complete!
', outputs=status_html ) # Launch the app if __name__ == "__main__": demo.launch()