PromptMeister's picture
Update app.py
6c9b3a8 verified
import gradio as gr
import numpy as np
import pandas as pd
import torch
import matplotlib.pyplot as plt
import json
import time
import os
from functools import partial
import datetime
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Global variables to store models
tokenizer = None
ner_pipeline = None
pos_pipeline = None
intent_classifier = None
semantic_model = None
stt_model = None # Speech-to-text model
models_loaded = False
# Database to store keyword ranking history (in-memory database for this example)
# In a real app, you would use a proper database
ranking_history = {}
def load_models(progress=gr.Progress()):
"""Lazy-load models only when needed"""
global tokenizer, ner_pipeline, pos_pipeline, intent_classifier, semantic_model, stt_model, models_loaded
if models_loaded:
return True
try:
progress(0.1, desc="Loading models...")
# Use smaller models and load them sequentially to reduce memory pressure
from transformers import AutoTokenizer, pipeline
progress(0.2, desc="Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
progress(0.3, desc="Loading NER model...")
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
progress(0.4, desc="Loading POS model...")
# Use smaller POS model
from transformers import AutoModelForTokenClassification, BertTokenizerFast
pos_model = AutoModelForTokenClassification.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
pos_tokenizer = BertTokenizerFast.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
pos_pipeline = pipeline("token-classification", model=pos_model, tokenizer=pos_tokenizer)
progress(0.6, desc="Loading intent classifier...")
# Use a smaller model for zero-shot classification
intent_classifier = pipeline(
"zero-shot-classification",
model="typeform/distilbert-base-uncased-mnli", # Smaller than BART
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
)
progress(0.7, desc="Loading speech-to-text model...")
try:
# Load automatic speech recognition model
from transformers import WhisperProcessor, WhisperForConditionalGeneration
processor = WhisperProcessor.from_pretrained("openai/whisper-small.en")
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small.en")
stt_model = (processor, stt_model)
except Exception as e:
print(f"Warning: Could not load speech-to-text model: {str(e)}")
stt_model = None # Set to None so we can check if it's available
progress(0.8, desc="Loading semantic model...")
try:
from sentence_transformers import SentenceTransformer
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
except Exception as e:
print(f"Warning: Could not load semantic model: {str(e)}")
semantic_model = None # Set to None so we can check if it's available
progress(1.0, desc="Models loaded successfully!")
models_loaded = True
return True
except Exception as e:
print(f"Error loading models: {str(e)}")
return f"Error: {str(e)}"
def speech_to_text(audio_path):
"""Convert speech to text using the loaded speech-to-text model"""
if stt_model is None:
return "Speech-to-text model not loaded. Please try text input instead."
try:
import librosa
import numpy as np
# Load audio file
audio, sr = librosa.load(audio_path, sr=16000)
# Process audio with Whisper
processor, model = stt_model
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
# Generate token ids
predicted_ids = model.generate(input_features)
# Decode token ids to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
print(f"Error in speech_to_text: {str(e)}")
return f"Error processing speech: {str(e)}"
def handle_voice_input(audio):
"""Handle voice input and convert to text"""
if audio is None:
return "No audio detected. Please try again."
try:
# Convert speech to text
text = speech_to_text(audio)
return text
except Exception as e:
print(f"Error in handle_voice_input: {str(e)}")
return f"Error: {str(e)}"
def simulate_google_serp(keyword, num_results=10):
"""Simulate Google SERP results for a keyword"""
try:
# In a real implementation, this would call the Google API
# For now, we'll generate fake SERP data
# Deterministic seed for consistent results by keyword
np.random.seed(sum(ord(c) for c in keyword))
serp_results = []
domains = [
"example.com", "wikipedia.org", "medium.com", "github.com",
"stackoverflow.com", "amazon.com", "youtube.com", "reddit.com",
"linkedin.com", "twitter.com", "facebook.com", "instagram.com"
]
for i in range(1, num_results + 1):
domain = domains[i % len(domains)]
title = f"{keyword.title()} - {domain.split('.')[0].title()} Resource #{i}"
snippet = f"This is a simulated SERP result for '{keyword}'. Result #{i} would provide relevant information about this topic."
url = f"https://www.{domain}/{keyword.replace(' ', '-')}-resource-{i}"
position = i
ctr = round(0.3 * (0.85 ** (i - 1)), 4) # Simulate click-through rate decay
serp_results.append({
"position": position,
"title": title,
"url": url,
"domain": domain,
"snippet": snippet,
"ctr_estimate": ctr,
"impressions_estimate": np.random.randint(1000, 10000)
})
return serp_results
except Exception as e:
print(f"Error in simulate_google_serp: {str(e)}")
return []
def update_ranking_history(keyword, serp_results):
"""Update the ranking history for a keyword"""
try:
# Get current timestamp
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Initialize if keyword not in history
if keyword not in ranking_history:
ranking_history[keyword] = []
# Add new entry
ranking_history[keyword].append({
"timestamp": timestamp,
"results": serp_results[:5] # Store top 5 results for history
})
# Keep only last 10 entries for each keyword
if len(ranking_history[keyword]) > 10:
ranking_history[keyword] = ranking_history[keyword][-10:]
return True
except Exception as e:
print(f"Error in update_ranking_history: {str(e)}")
return False
def get_semantic_similarity(token, comparison_terms):
"""Calculate semantic similarity between a token and comparison terms"""
try:
from sklearn.metrics.pairwise import cosine_similarity
token_embedding = semantic_model.encode([token])[0]
comparison_embeddings = semantic_model.encode(comparison_terms)
similarities = []
for i, emb in enumerate(comparison_embeddings):
similarity = cosine_similarity([token_embedding], [emb])[0][0]
similarities.append((comparison_terms[i], float(similarity)))
return sorted(similarities, key=lambda x: x[1], reverse=True)
except Exception as e:
print(f"Error in semantic similarity: {str(e)}")
# Return dummy data on error
return [(term, 0.5) for term in comparison_terms]
def get_token_colors(token_type):
colors = {
"prefix": "#D8BFD8", # Light purple
"suffix": "#AEDAA4", # Light green
"stem": "#A4C2F4", # Light blue
"compound_first": "#FFCC80", # Light orange
"compound_second": "#FFCC80", # Light orange
"word": "#E5E5E5" # Light gray
}
return colors.get(token_type, "#E5E5E5")
def simulate_historical_data(token):
"""Generate simulated historical usage data for a token"""
eras = ["1900s", "1950s", "1980s", "2000s", "2010s", "Present"]
# Different patterns based on token characteristics
if len(token) > 8:
# Possibly a technical term - recent growth
values = [10, 20, 30, 60, 85, 95]
elif token.startswith(("un", "re", "de", "pre")):
# Prefix words tend to be older
values = [45, 50, 60, 70, 75, 80]
else:
# Standard pattern for common words
# Use token hash value modulo instead of hash() directly to avoid different results across runs
base = 50 + (sum(ord(c) for c in token) % 30)
# Use a fixed seed for reproducibility
np.random.seed(sum(ord(c) for c in token))
noise = np.random.normal(0, 5, 6)
values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)]
return list(zip(eras, values))
def generate_origin_data(token):
"""Generate simulated origin/etymology data for a token"""
origins = [
{"era": "Ancient", "language": "Latin"},
{"era": "Ancient", "language": "Greek"},
{"era": "Medieval", "language": "Old English"},
{"era": "16th century", "language": "French"},
{"era": "18th century", "language": "Germanic"},
{"era": "19th century", "language": "Anglo-Saxon"},
{"era": "20th century", "language": "Modern English"}
]
# Deterministic selection based on the token
index = sum(ord(c) for c in token) % len(origins)
origin = origins[index]
note = f"First appeared in {origin['era']} texts derived from {origin['language']}."
origin["note"] = note
return origin
def analyze_token_types(tokens):
"""Identify token types (prefix, suffix, compound, etc.)"""
processed_tokens = []
prefixes = ["un", "re", "de", "pre", "post", "anti", "pro", "inter", "sub", "super"]
suffixes = ["ing", "ed", "ly", "ment", "tion", "able", "ible", "ness", "ful", "less"]
for token in tokens:
token_text = token.lower()
token_type = "word"
# Check for prefixes
for prefix in prefixes:
if token_text.startswith(prefix) and len(token_text) > len(prefix) + 2:
if token_text != prefix: # Make sure the word isn't just the prefix
token_type = "prefix"
break
# Check for suffixes
if token_type == "word":
for suffix in suffixes:
if token_text.endswith(suffix) and len(token_text) > len(suffix) + 2:
token_type = "suffix"
break
# Check for compound words (simplified)
if token_type == "word" and len(token_text) > 8:
token_type = "compound_first" # Simplified - in reality would need more analysis
processed_tokens.append({
"text": token_text,
"type": token_type
})
return processed_tokens
def plot_historical_data(historical_data):
"""Create a plot of historical usage data, with error handling"""
try:
eras = [item[0] for item in historical_data]
values = [item[1] for item in historical_data]
plt.figure(figsize=(8, 3))
plt.bar(eras, values, color='skyblue')
plt.title('Historical Usage')
plt.xlabel('Era')
plt.ylabel('Usage Level')
plt.ylim(0, 100)
plt.xticks(rotation=45)
plt.tight_layout()
return plt
except Exception as e:
print(f"Error in plot_historical_data: {str(e)}")
# Return a simple error plot
plt.figure(figsize=(8, 3))
plt.text(0.5, 0.5, f"Error creating plot: {str(e)}",
horizontalalignment='center', verticalalignment='center')
plt.axis('off')
return plt
def create_evolution_chart(data, forecast_months=6, growth_scenario="Moderate"):
"""Create a simpler chart that's more compatible with Gradio"""
try:
import plotly.graph_objects as go
# Create a basic figure without subplots
fig = go.Figure()
# Add main trace for search volume
fig.add_trace(
go.Scatter(
x=[item["month"] for item in data],
y=[item["searchVolume"] for item in data],
name="Search Volume",
line=dict(color="#8884d8", width=3),
mode="lines+markers"
)
)
# Scale the other metrics to be visible on the same chart
max_volume = max([item["searchVolume"] for item in data])
scale_factor = max_volume / 100
# Add competition score (scaled)
fig.add_trace(
go.Scatter(
x=[item["month"] for item in data],
y=[item["competitionScore"] * scale_factor for item in data],
name="Competition Score",
line=dict(color="#82ca9d", width=2, dash="dot"),
mode="lines+markers"
)
)
# Add intent clarity (scaled)
fig.add_trace(
go.Scatter(
x=[item["month"] for item in data],
y=[item["intentClarity"] * scale_factor for item in data],
name="Intent Clarity",
line=dict(color="#ffc658", width=2, dash="dash"),
mode="lines+markers"
)
)
# Simple layout
fig.update_layout(
title=f"Keyword Evolution Forecast ({growth_scenario} Growth)",
xaxis_title="Month",
yaxis_title="Value",
legend=dict(orientation="h", y=1.1),
height=500
)
return fig
except Exception as e:
print(f"Error in chart creation: {str(e)}")
# Fallback to an even simpler chart
fig = go.Figure(data=go.Scatter(x=[1, 2, 3], y=[4, 1, 2]))
fig.update_layout(title="Fallback Chart (Error occurred)")
return fig
def create_ranking_history_chart(keyword_history):
"""Create a chart showing keyword ranking history over time"""
try:
if not keyword_history or len(keyword_history) < 2:
# Not enough data for a meaningful chart
fig = go.Figure()
fig.update_layout(
title="Insufficient Ranking Data",
annotations=[{
"text": "Need at least 2 data points for ranking history",
"showarrow": False,
"font": {"size": 16},
"xref": "paper",
"yref": "paper",
"x": 0.5,
"y": 0.5
}]
)
return fig
# Create a figure
fig = go.Figure()
# Extract timestamps and convert to datetime objects
timestamps = [entry["timestamp"] for entry in keyword_history]
dates = [datetime.datetime.strptime(ts, "%Y-%m-%d %H:%M:%S") for ts in timestamps]
# Get unique domains from all results
all_domains = set()
for entry in keyword_history:
for result in entry["results"]:
all_domains.add(result["domain"])
# Colors for different domains
domain_colors = {}
color_palette = [
"#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"
]
for i, domain in enumerate(all_domains):
domain_colors[domain] = color_palette[i % len(color_palette)]
# Track domains and their positions over time
domain_tracking = {domain: {"x": [], "y": [], "text": []} for domain in all_domains}
for i, entry in enumerate(keyword_history):
for result in entry["results"]:
domain = result["domain"]
position = result["position"]
title = result["title"]
domain_tracking[domain]["x"].append(dates[i])
domain_tracking[domain]["y"].append(position)
domain_tracking[domain]["text"].append(title)
# Add traces for each domain
for domain, data in domain_tracking.items():
if len(data["x"]) > 0: # Only add domains that have data
fig.add_trace(
go.Scatter(
x=data["x"],
y=data["y"],
mode="lines+markers",
name=domain,
line=dict(color=domain_colors[domain]),
hovertemplate="%{text}<br>Position: %{y}<br>Date: %{x}<extra></extra>",
text=data["text"],
marker=dict(size=8)
)
)
# Update layout
fig.update_layout(
title="Keyword Ranking History",
xaxis_title="Date",
yaxis_title="Position",
yaxis=dict(autorange="reversed"), # Invert y-axis so position 1 is on top
hovermode="closest",
height=500
)
return fig
except Exception as e:
print(f"Error in create_ranking_history_chart: {str(e)}")
# Return fallback chart
fig = go.Figure()
fig.update_layout(
title="Error Creating Ranking Chart",
annotations=[{
"text": f"Error: {str(e)}",
"showarrow": False,
"font": {"size": 14},
"xref": "paper",
"yref": "paper",
"x": 0.5,
"y": 0.5
}]
)
return fig
def generate_serp_html(keyword, serp_results):
"""Generate HTML for SERP results"""
if not serp_results:
return "<div>No SERP results available</div>"
html = f"""
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
<h2 style="margin-top: 0;">SERP Results for "{keyword}"</h2>
<div style="background-color: #f5f5f5; padding: 10px; border-radius: 4px; margin-bottom: 20px;">
<div style="color: #666; font-size: 12px;">This is a simulated SERP. In a real application, this would use the Google API.</div>
</div>
<div class="serp-results" style="display: flex; flex-direction: column; gap: 16px;">
"""
for result in serp_results:
position = result["position"]
title = result["title"]
url = result["url"]
snippet = result["snippet"]
domain = result["domain"]
ctr = result["ctr_estimate"]
impressions = result["impressions_estimate"]
html += f"""
<div class="serp-result" style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; position: relative;">
<div style="position: absolute; top: -10px; left: -10px; background-color: #4299e1; color: white; width: 24px; height: 24px; border-radius: 50%; display: flex; align-items: center; justify-content: center; font-size: 12px;">
{position}
</div>
<div style="margin-bottom: 5px;">
<a href="#" style="font-size: 18px; color: #1a73e8; text-decoration: none; font-weight: 500;">{title}</a>
</div>
<div style="margin-bottom: 8px; color: #006621; font-size: 14px;">{url}</div>
<div style="color: #4d5156; font-size: 14px;">{snippet}</div>
<div style="display: flex; margin-top: 10px; font-size: 12px; color: #666;">
<div style="margin-right: 15px;"><span style="font-weight: 500;">CTR:</span> {ctr:.2%}</div>
<div><span style="font-weight: 500;">Est. Impressions:</span> {impressions:,}</div>
</div>
</div>
"""
html += """
</div>
</div>
"""
return html
def generate_token_visualization_html(token_analysis, full_analysis):
"""Generate HTML for token visualization"""
html = """
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
<h2 style="margin-top: 0;">Token Visualization</h2>
<div style="margin-bottom: 20px; padding: 15px; background-color: #f8f9fa; border-radius: 6px;">
<div style="margin-bottom: 8px; font-weight: bold; color: #4a5568;">Human View:</div>
<div style="display: flex; flex-wrap: wrap; gap: 8px;">
"""
# Add human view tokens
for token in token_analysis:
html += f"""
<div style="padding: 6px 12px; background-color: white; border: 1px solid #cbd5e0; border-radius: 4px;">
{token['text']}
</div>
"""
html += """
</div>
</div>
<div style="text-align: center; margin: 15px 0;">
<span style="font-size: 20px;">↓</span>
</div>
<div style="padding: 15px; background-color: #f0fff4; border-radius: 6px;">
<div style="margin-bottom: 8px; font-weight: bold; color: #2f855a;">Machine View:</div>
<div style="display: flex; flex-wrap: wrap; gap: 8px;">
"""
# Add machine view tokens
for token in full_analysis:
bg_color = get_token_colors(token["type"])
html += f"""
<div style="padding: 6px 12px; background-color: {bg_color}; border: 1px solid #a0aec0; border-radius: 4px; font-family: monospace;">
{token['token']}
<span style="font-size: 10px; opacity: 0.7; display: block;">{token['type']}</span>
</div>
"""
html += """
</div>
</div>
<div style="margin-top: 20px; display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; text-align: center;">
"""
# Add stats
word_count = len(token_analysis)
token_count = len(full_analysis)
ratio = round(token_count / max(1, word_count), 2)
html += f"""
<div style="background-color: #ebf8ff; padding: 10px; border-radius: 6px;">
<div style="font-size: 24px; font-weight: bold; color: #3182ce;">{word_count}</div>
<div style="font-size: 14px; color: #4299e1;">Words</div>
</div>
<div style="background-color: #f0fff4; padding: 10px; border-radius: 6px;">
<div style="font-size: 24px; font-weight: bold; color: #38a169;">{token_count}</div>
<div style="font-size: 14px; color: #48bb78;">Tokens</div>
</div>
<div style="background-color: #faf5ff; padding: 10px; border-radius: 6px;">
<div style="font-size: 24px; font-weight: bold; color: #805ad5;">{ratio}</div>
<div style="font-size: 14px; color: #9f7aea;">Tokens per Word</div>
</div>
"""
html += """
</div>
</div>
"""
return html
def generate_full_analysis_html(keyword, token_analysis, intent_analysis, evolution_potential, trends):
"""Generate HTML for full keyword analysis"""
html = f"""
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
<h2 style="margin-top: 0;">Keyword DNA Analysis for: {keyword}</h2>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;">
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
<h3 style="margin-top: 0; font-size: 16px;">Intent Gene</h3>
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
<span>Type:</span>
<span>{intent_analysis['type']}</span>
</div>
<div style="display: flex; justify-content: space-between; align-items: center;">
<span>Strength:</span>
<div style="width: 120px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
<div style="height: 100%; background-color: #48bb78; width: {intent_analysis['strength']}%;"></div>
</div>
</div>
</div>
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
<h3 style="margin-top: 0; font-size: 16px;">Evolution Potential</h3>
<div style="display: flex; justify-content: center; align-items: center; height: 100px;">
<div style="position: relative; width: 100px; height: 100px;">
<div style="position: absolute; inset: 0; display: flex; align-items: center; justify-content: center;">
<span style="font-size: 24px; font-weight: bold;">{evolution_potential}</span>
</div>
<svg width="100" height="100" viewBox="0 0 36 36">
<path
d="M18 2.0845 a 15.9155 15.9155 0 0 1 0 31.831 a 15.9155 15.9155 0 0 1 0 -31.831"
fill="none"
stroke="#4CAF50"
stroke-width="3"
stroke-dasharray="{evolution_potential}, 100"
/>
</svg>
</div>
</div>
</div>
</div>
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 20px;">
<h3 style="margin-top: 0; font-size: 16px;">Future Mutations</h3>
<div style="display: flex; flex-direction: column; gap: 8px;">
"""
# Add trends
for trend in trends:
html += f"""
<div style="display: flex; align-items: center; gap: 8px;">
<span style="color: #48bb78;">↗</span>
<span>{trend}</span>
</div>
"""
html += """
</div>
</div>
<h3 style="margin-bottom: 10px;">Token Details & Historical Analysis</h3>
"""
# Add token details
for token in token_analysis:
html += f"""
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 15px;">
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;">
<div style="display: flex; align-items: center; gap: 8px;">
<span style="font-size: 18px; font-weight: medium;">{token['token']}</span>
<span style="padding: 2px 8px; background-color: #edf2f7; border-radius: 4px; font-size: 12px;">{token['posTag']}</span>
"""
if token['entityType']:
html += f"""
<span style="padding: 2px 8px; background-color: #ebf8ff; color: #3182ce; border-radius: 4px; font-size: 12px; display: flex; align-items: center;">
{token['entityType']}
</span>
"""
html += f"""
</div>
<div style="display: flex; align-items: center; gap: 4px;">
<span style="font-size: 12px; color: #718096;">Importance:</span>
<div style="width: 64px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
<div style="height: 100%; background-color: #4299e1; width: {token['importance']}%;"></div>
</div>
</div>
</div>
<div style="margin-top: 15px;">
<div style="font-size: 12px; color: #718096; margin-bottom: 4px;">Historical Relevance:</div>
<div style="border: 1px solid #e2e8f0; border-radius: 4px; padding: 10px; background-color: #f7fafc;">
<div style="font-size: 12px; margin-bottom: 8px;">
<span style="font-weight: 500;">Origin: </span>
<span>{token['origin']['era']}, </span>
<span style="font-style: italic;">{token['origin']['language']}</span>
</div>
<div style="font-size: 12px; margin-bottom: 12px;">{token['origin']['note']}</div>
<div style="display: flex; align-items: flex-end; height: 50px; gap: 4px; margin-top: 8px;">
"""
# Add historical data bars
for period, value in token['historicalData']:
opacity = 0.3 + (token['historicalData'].index((period, value)) * 0.1)
html += f"""
<div style="display: flex; flex-direction: column; align-items: center; flex: 1;">
<div style="width: 100%; background-color: rgba(66, 153, 225, {opacity}); border-radius: 2px 2px 0 0; height: {max(4, value)}%;"></div>
<div style="font-size: 9px; margin-top: 4px; color: #718096; transform: rotate(45deg); transform-origin: top left; white-space: nowrap;">
{period}
</div>
</div>
"""
html += """
</div>
</div>
</div>
</div>
"""
html += """
</div>
"""
return html
def analyze_keyword(keyword, forecast_months=6, growth_scenario="Moderate", get_serp=False, progress=gr.Progress()):
"""Main function to analyze a keyword"""
if not keyword or not keyword.strip():
return (
"<div>Please enter a keyword to analyze</div>",
"<div>Please enter a keyword to analyze</div>",
None,
None,
None,
None,
None
)
progress(0.1, desc="Starting analysis...")
# Load models if not already loaded
model_status = load_models(progress)
if isinstance(model_status, str) and model_status.startswith("Error"):
return (
f"<div style='color:red;'>{model_status}</div>",
f"<div style='color:red;'>{model_status}</div>",
None,
None,
None,
None,
None
)
try:
# Basic tokenization - just split on spaces for simplicity
words = keyword.strip().lower().split()
progress(0.2, desc="Analyzing tokens...")
# Get token types
token_analysis = analyze_token_types(words)
progress(0.3, desc="Running NER...")
# Get NER tags - handle potential errors
try:
ner_results = ner_pipeline(keyword)
except Exception as e:
print(f"NER error: {str(e)}")
ner_results = []
progress(0.4, desc="Running POS tagging...")
# Get POS tags - handle potential errors
try:
pos_results = pos_pipeline(keyword)
except Exception as e:
print(f"POS error: {str(e)}")
pos_results = []
# Process and organize results
full_token_analysis = []
for token in token_analysis:
# Find POS tag for this token
pos_tag = "NOUN" # Default
for pos_result in pos_results:
if pos_result["word"].lower() == token["text"]:
pos_tag = pos_result["entity"]
break
# Find entity type if any
entity_type = None
for ner_result in ner_results:
if ner_result["word"].lower() == token["text"]:
entity_type = ner_result["entity"]
break
# Generate historical data
historical_data = simulate_historical_data(token["text"])
# Generate origin data
origin = generate_origin_data(token["text"])
# Calculate importance (simplified algorithm)
importance = 60 + (len(token["text"]) * 2)
importance = min(95, importance)
# Generate more meaningful related terms using semantic similarity
if semantic_model is not None:
try:
# Generate some potential related terms
prefix_related = [f"about {token['text']}", f"what is {token['text']}", f"how to {token['text']}"]
synonym_candidates = ["similar", "equivalent", "comparable", "like", "related", "alternative"]
domain_terms = ["software", "marketing", "business", "science", "education", "technology"]
comparison_terms = prefix_related + synonym_candidates + domain_terms
# Get similarities
similarities = get_semantic_similarity(token['text'], comparison_terms)
# Use top 3 most similar terms
related_terms = [term for term, score in similarities[:3]]
except Exception as e:
print(f"Error generating semantic related terms: {str(e)}")
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
else:
# Fallback if semantic model isn't loaded
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
full_token_analysis.append({
"token": token["text"],
"type": token["type"],
"posTag": pos_tag,
"entityType": entity_type,
"importance": importance,
"historicalData": historical_data,
"origin": origin,
"relatedTerms": related_terms
})
progress(0.5, desc="Analyzing intent...")
# Intent analysis - handle potential errors
try:
intent_result = intent_classifier(
keyword,
candidate_labels=["informational", "navigational", "transactional"]
)
intent_analysis = {
"type": intent_result["labels"][0].capitalize(),
"strength": round(intent_result["scores"][0] * 100),
"mutations": [
f"{intent_result['labels'][0]}-variation-1",
f"{intent_result['labels'][0]}-variation-2"
]
}
except Exception as e:
print(f"Intent classification error: {str(e)}")
intent_analysis = {
"type": "Informational", # Default fallback
"strength": 70,
"mutations": ["fallback-variation-1", "fallback-variation-2"]
}
# Evolution potential (simplified calculation)
evolution_potential = min(95, 65 + (len(keyword) % 30))
# Predicted trends (simplified)
trends = [
"Voice search adaptation",
"Visual search integration"
]
# Generate more realistic and keyword-specific evolution data
base_volume = 1000 + (len(keyword) * 100)
# Adjust growth factor based on scenario
if growth_scenario == "Conservative":
growth_factor = 1.05 + (0.02 * (sum(ord(c) for c in keyword) % 5))
elif growth_scenario == "Aggressive":
growth_factor = 1.15 + (0.05 * (sum(ord(c) for c in keyword) % 5))
else: # Moderate
growth_factor = 1.1 + (0.03 * (sum(ord(c) for c in keyword) % 5))
evolution_data = []
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"][:int(forecast_months)]
current_volume = base_volume
for month in months:
# Add some randomness to make it look more realistic
np.random.seed(sum(ord(c) for c in month + keyword))
random_factor = 0.9 + (0.2 * np.random.random())
current_volume *= growth_factor * random_factor
evolution_data.append({
"month": month,
"searchVolume": int(current_volume),
"competitionScore": min(95, 45 + (months.index(month) * 3) + (sum(ord(c) for c in keyword) % 10)),
"intentClarity": min(95, 80 + (months.index(month) * 2) + (sum(ord(c) for c in keyword) % 5))
})
progress(0.6, desc="Creating visualizations...")
# Create interactive evolution chart
evolution_chart = create_evolution_chart(evolution_data, forecast_months, growth_scenario)
# SERP results and ranking history (new feature)
serp_results = None
ranking_chart = None
serp_html = None
if get_serp:
progress(0.7, desc="Fetching SERP data...")
# Get SERP results
serp_results = simulate_google_serp(keyword)
# Update ranking history
update_ranking_history(keyword, serp_results)
progress(0.8, desc="Creating ranking charts...")
# Create ranking history chart
if keyword in ranking_history and len(ranking_history[keyword]) > 0:
ranking_chart = create_ranking_history_chart(ranking_history[keyword])
# Generate SERP HTML
serp_html = generate_serp_html(keyword, serp_results)
# Generate HTML for token visualization
token_viz_html = generate_token_visualization_html(token_analysis, full_token_analysis)
# Generate HTML for full analysis
analysis_html = generate_full_analysis_html(
keyword,
full_token_analysis,
intent_analysis,
evolution_potential,
trends
)
# Generate JSON results
json_results = {
"keyword": keyword,
"tokenAnalysis": full_token_analysis,
"intentAnalysis": intent_analysis,
"evolutionPotential": evolution_potential,
"predictedTrends": trends,
"forecast": {
"months": forecast_months,
"scenario": growth_scenario,
"data": evolution_data
},
"serpResults": serp_results
}
progress(1.0, desc="Analysis complete!")
return token_viz_html, analysis_html, json_results, evolution_chart, serp_html, ranking_chart, keyword
except Exception as e:
error_message = f"<div style='color:red;padding:20px;'>Error analyzing keyword: {str(e)}</div>"
print(f"Error in analyze_keyword: {str(e)}")
return error_message, error_message, None, None, None, None, None
# Create the Gradio interface
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown("# Keyword DNA Analyzer")
gr.Markdown("Analyze the linguistic DNA of your keywords to understand their structure, intent, and potential.")
with gr.Row():
with gr.Column(scale=1):
# Add voice search capabilities
with gr.Group():
gr.Markdown("### Enter Keyword")
with gr.Row():
input_text = gr.Textbox(label="Enter keyword to analyze", placeholder="e.g. artificial intelligence")
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Or use voice search")
voice_submit_btn = gr.Button("Convert Voice to Text", variant="secondary")
# Add SERP settings
with gr.Accordion("Analysis Settings", open=False):
with gr.Row():
forecast_months = gr.Slider(minimum=3, maximum=12, value=6, step=1, label="Forecast Months")
include_serp = gr.Checkbox(label="Include SERP Analysis", value=True)
growth_scenario = gr.Radio(
["Conservative", "Moderate", "Aggressive"],
value="Moderate",
label="Growth Scenario"
)
# Add loading indicator
status_html = gr.HTML('<div style="color:gray;text-align:center;">Enter a keyword and click "Analyze DNA"</div>')
analyze_btn = gr.Button("Analyze DNA", variant="primary")
with gr.Row():
example_btns = []
for example in ["preprocessing", "breakdown", "artificial intelligence", "transformer model", "machine learning"]:
example_btns.append(gr.Button(example))
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Token Visualization"):
token_viz_html = gr.HTML()
with gr.Tab("Full Analysis"):
analysis_html = gr.HTML()
with gr.Tab("Evolution Chart"):
evolution_chart = gr.Plot(label="Keyword Evolution Forecast")
with gr.Tab("SERP Results"):
serp_html = gr.HTML()
with gr.Tab("Ranking History"):
ranking_chart = gr.Plot(label="Keyword Ranking History")
with gr.Tab("Raw Data"):
json_output = gr.JSON()
# Voice to text conversion handler
voice_submit_btn.click(
handle_voice_input,
inputs=[audio_input],
outputs=[input_text]
)
# Set up event handlers
analyze_btn.click(
lambda: '<div style="color:blue;text-align:center;">Loading models and analyzing... This may take a moment.</div>',
outputs=status_html
).then(
analyze_keyword,
inputs=[input_text, forecast_months, growth_scenario, include_serp],
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
).then(
lambda: '<div style="color:green;text-align:center;">Analysis complete!</div>',
outputs=status_html
)
# Example buttons
for btn in example_btns:
# Define the function that will be called when an example button is clicked
def set_example(btn_label):
return btn_label
btn.click(
set_example,
inputs=[btn],
outputs=[input_text]
).then(
lambda: '<div style="color:blue;text-align:center;">Loading models and analyzing... This may take a moment.</div>',
outputs=status_html
).then(
analyze_keyword,
inputs=[input_text, forecast_months, growth_scenario, include_serp],
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
).then(
lambda: '<div style="color:green;text-align:center;">Analysis complete!</div>',
outputs=status_html
)
# Launch the app
if __name__ == "__main__":
demo.launch()