Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Just search - A Smart Search Agent using Menlo/Lucy-128k
|
4 |
+
Part of the Just, AKA Simple series
|
5 |
+
Built with Gradio, DuckDuckGo Search, and Hugging Face Transformers
|
6 |
+
"""
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
11 |
+
from duckduckgo_search import DDGS
|
12 |
+
import json
|
13 |
+
import re
|
14 |
+
import time
|
15 |
+
from typing import List, Dict, Tuple
|
16 |
+
import spaces
|
17 |
+
|
18 |
+
# Initialize the model and tokenizer globally for efficiency
|
19 |
+
MODEL_NAME = "Menlo/Lucy-128k"
|
20 |
+
tokenizer = None
|
21 |
+
model = None
|
22 |
+
search_pipeline = None
|
23 |
+
|
24 |
+
def initialize_model():
|
25 |
+
"""Initialize the Menlo/Lucy-128k model and tokenizer"""
|
26 |
+
global tokenizer, model, search_pipeline
|
27 |
+
try:
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
29 |
+
if tokenizer.pad_token is None:
|
30 |
+
tokenizer.pad_token = tokenizer.eos_token
|
31 |
+
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
MODEL_NAME,
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
device_map="auto",
|
36 |
+
trust_remote_code=True,
|
37 |
+
max_length=131072, # 128k context length
|
38 |
+
rope_scaling={"type": "linear", "factor": 1.0} # Enable extended context
|
39 |
+
)
|
40 |
+
search_pipeline = pipeline(
|
41 |
+
"text-generation",
|
42 |
+
model=model,
|
43 |
+
tokenizer=tokenizer,
|
44 |
+
torch_dtype=torch.float16,
|
45 |
+
device_map="auto",
|
46 |
+
max_new_tokens=16384, # 16k max output
|
47 |
+
temperature=0.3,
|
48 |
+
do_sample=True,
|
49 |
+
pad_token_id=tokenizer.eos_token_id
|
50 |
+
)
|
51 |
+
return True
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error initializing model: {e}")
|
54 |
+
return False
|
55 |
+
|
56 |
+
def extract_thinking_and_response(text: str) -> Tuple[str, str]:
|
57 |
+
"""Extract thinking process and clean response from AI output"""
|
58 |
+
thinking = ""
|
59 |
+
response = text
|
60 |
+
|
61 |
+
# Multiple patterns for thinking extraction
|
62 |
+
patterns = [
|
63 |
+
(r'<think>(.*?)</think>', 1),
|
64 |
+
(r'<thinking>(.*?)</thinking>', 1),
|
65 |
+
(r'(Let me think about.*?)(?=\n\n|\n[A-Z]|$)', 1), # Catch untagged thinking
|
66 |
+
]
|
67 |
+
|
68 |
+
for pattern, group_idx in patterns:
|
69 |
+
thinking_match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
|
70 |
+
if thinking_match:
|
71 |
+
thinking = thinking_match.group(group_idx).strip()
|
72 |
+
response = re.sub(pattern, '', text, flags=re.DOTALL | re.IGNORECASE)
|
73 |
+
break
|
74 |
+
|
75 |
+
# If no thinking found but text looks like reasoning, extract it
|
76 |
+
if not thinking and ('let me think' in text.lower() or 'i need to consider' in text.lower()):
|
77 |
+
lines = text.split('\n')
|
78 |
+
thinking_lines = []
|
79 |
+
response_lines = []
|
80 |
+
in_thinking = False
|
81 |
+
|
82 |
+
for line in lines:
|
83 |
+
lower_line = line.lower().strip()
|
84 |
+
if any(phrase in lower_line for phrase in ['let me think', 'i need to consider', 'first,', 'the user is asking']):
|
85 |
+
in_thinking = True
|
86 |
+
thinking_lines.append(line)
|
87 |
+
elif in_thinking and (line.strip().startswith(('β’', '-', '1.', '2.', '3.')) or len(line.strip()) < 5):
|
88 |
+
in_thinking = False
|
89 |
+
response_lines.append(line)
|
90 |
+
elif in_thinking:
|
91 |
+
thinking_lines.append(line)
|
92 |
+
else:
|
93 |
+
response_lines.append(line)
|
94 |
+
|
95 |
+
if thinking_lines:
|
96 |
+
thinking = '\n'.join(thinking_lines).strip()
|
97 |
+
response = '\n'.join(response_lines).strip()
|
98 |
+
|
99 |
+
# Clean up the response
|
100 |
+
response = re.sub(r'^(Assistant:|AI:|Response:|Answer:)\s*', '', response.strip())
|
101 |
+
response = re.sub(r'\[INST\].*?\[\/INST\]', '', response, flags=re.DOTALL)
|
102 |
+
response = re.sub(r'<\|.*?\|>', '', response)
|
103 |
+
|
104 |
+
# Remove any remaining thinking artifacts from response
|
105 |
+
response = re.sub(r'Let me think.*?(?=\n\n|\n[A-Z]|$)', '', response, flags=re.DOTALL | re.IGNORECASE)
|
106 |
+
response = re.sub(r'I need to consider.*?(?=\n\n|\n[A-Z]|$)', '', response, flags=re.DOTALL | re.IGNORECASE)
|
107 |
+
|
108 |
+
return thinking.strip(), response.strip()
|
109 |
+
|
110 |
+
def clean_response(text: str) -> str:
|
111 |
+
"""Clean up the AI response to extract just the relevant content"""
|
112 |
+
_, response = extract_thinking_and_response(text)
|
113 |
+
return response
|
114 |
+
|
115 |
+
@spaces.GPU
|
116 |
+
def generate_search_queries(user_query: str) -> Tuple[List[str], str]:
|
117 |
+
"""Generate multiple search queries based on user input using AI"""
|
118 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
119 |
+
You are an expert search query strategist. Your task is to generate diverse, effective search queries that will find the most comprehensive information to answer the user's question.
|
120 |
+
|
121 |
+
**Your Approach:**
|
122 |
+
1. Analyze the user's question to identify key concepts, entities, and intent
|
123 |
+
2. Consider different angles: current news, technical details, background context, expert opinions
|
124 |
+
3. Use varied terminology: formal terms, common language, industry jargon, synonyms
|
125 |
+
4. Target different types of sources: news sites, academic papers, official documents, forums
|
126 |
+
|
127 |
+
**Query Requirements:**
|
128 |
+
- Generate exactly 4 distinct search queries
|
129 |
+
- Each query should be 3-8 words long
|
130 |
+
- Optimize for search engine effectiveness
|
131 |
+
- Cover different aspects or perspectives of the topic
|
132 |
+
- Use specific, relevant keywords
|
133 |
+
|
134 |
+
**Examples:**
|
135 |
+
User: "What is the current status of artificial intelligence regulation?"
|
136 |
+
Queries:
|
137 |
+
AI regulation 2024 legislation
|
138 |
+
artificial intelligence policy updates
|
139 |
+
government AI rules current
|
140 |
+
machine learning regulation news
|
141 |
+
|
142 |
+
User: "How does climate change affect coral reefs?"
|
143 |
+
Queries:
|
144 |
+
climate change coral reef impact
|
145 |
+
ocean warming coral bleaching
|
146 |
+
coral reef ecosystem changes
|
147 |
+
marine biodiversity climate effects
|
148 |
+
|
149 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
150 |
+
User question: {user_query}
|
151 |
+
|
152 |
+
Generate 4 strategic search queries:
|
153 |
+
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
154 |
+
|
155 |
+
try:
|
156 |
+
response = search_pipeline(prompt, max_new_tokens=150, temperature=0.1)
|
157 |
+
generated_text = response[0]['generated_text']
|
158 |
+
|
159 |
+
# Extract assistant's response
|
160 |
+
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
|
161 |
+
thinking, cleaned_response = extract_thinking_and_response(assistant_response)
|
162 |
+
|
163 |
+
# Split and clean queries
|
164 |
+
lines = [line.strip() for line in cleaned_response.split('\n') if line.strip()]
|
165 |
+
|
166 |
+
# Filter to get actual search queries (remove meta-commentary)
|
167 |
+
queries = []
|
168 |
+
for line in lines:
|
169 |
+
# Skip lines that look like explanations or meta-commentary
|
170 |
+
if any(skip_word in line.lower() for skip_word in [
|
171 |
+
'user', 'question', 'query', 'search', 'generate', 'here are',
|
172 |
+
'these are', 'i will', 'let me', 'first', 'second', 'third', 'fourth',
|
173 |
+
'based on', 'the user', 'example'
|
174 |
+
]):
|
175 |
+
continue
|
176 |
+
|
177 |
+
# Skip lines with too many words (likely explanations)
|
178 |
+
if len(line.split()) > 8:
|
179 |
+
continue
|
180 |
+
|
181 |
+
# Skip numbered/bulleted lines
|
182 |
+
line_clean = re.sub(r'^\d+[\.\)]\s*', '', line)
|
183 |
+
line_clean = re.sub(r'^[\-\*\β’]\s*', '', line_clean)
|
184 |
+
line_clean = line_clean.strip('"\'')
|
185 |
+
|
186 |
+
if len(line_clean) > 3 and len(line_clean.split()) >= 2:
|
187 |
+
queries.append(line_clean)
|
188 |
+
|
189 |
+
# If we didn't get good queries, fall back to simple variations
|
190 |
+
if len(queries) < 2:
|
191 |
+
queries = [
|
192 |
+
user_query,
|
193 |
+
f"{user_query} 2024",
|
194 |
+
f"{user_query} news",
|
195 |
+
f"{user_query} latest"
|
196 |
+
]
|
197 |
+
|
198 |
+
return queries[:4], thinking
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
print(f"Error generating queries: {e}")
|
202 |
+
# Fallback to simple query variations
|
203 |
+
return [user_query, f"{user_query} 2024", f"{user_query} news", f"{user_query} latest"], ""
|
204 |
+
|
205 |
+
def search_web(queries: List[str]) -> List[Dict]:
|
206 |
+
"""Search the web using DuckDuckGo with multiple queries"""
|
207 |
+
all_results = []
|
208 |
+
ddgs = DDGS()
|
209 |
+
|
210 |
+
for query in queries:
|
211 |
+
try:
|
212 |
+
results = ddgs.text(query, max_results=5, region='wt-wt', safesearch='moderate')
|
213 |
+
for result in results:
|
214 |
+
result['search_query'] = query
|
215 |
+
all_results.append(result)
|
216 |
+
time.sleep(0.5) # Rate limiting
|
217 |
+
except Exception as e:
|
218 |
+
print(f"Error searching for '{query}': {e}")
|
219 |
+
continue
|
220 |
+
|
221 |
+
# Remove duplicates based on URL
|
222 |
+
seen_urls = set()
|
223 |
+
unique_results = []
|
224 |
+
for result in all_results:
|
225 |
+
if result['href'] not in seen_urls:
|
226 |
+
seen_urls.add(result['href'])
|
227 |
+
unique_results.append(result)
|
228 |
+
|
229 |
+
return unique_results[:15] # Return max 15 results
|
230 |
+
|
231 |
+
@spaces.GPU
|
232 |
+
def filter_relevant_results(user_query: str, generated_queries: List[str], search_results: List[Dict]) -> Tuple[List[Dict], str]:
|
233 |
+
"""Use AI to filter and rank search results by relevance"""
|
234 |
+
if not search_results:
|
235 |
+
return [], ""
|
236 |
+
|
237 |
+
# Prepare results summary for AI
|
238 |
+
results_text = ""
|
239 |
+
for i, result in enumerate(search_results[:15]): # Increased limit for better coverage
|
240 |
+
results_text += f"{i+1}. Title: {result.get('title', 'No title')}\n"
|
241 |
+
results_text += f" URL: {result.get('href', 'No URL')}\n"
|
242 |
+
results_text += f" Snippet: {result.get('body', 'No description')[:300]}...\n"
|
243 |
+
results_text += f" Search Query: {result.get('search_query', 'Unknown')}\n\n"
|
244 |
+
|
245 |
+
queries_text = "\n".join(f"β’ {q}" for q in generated_queries)
|
246 |
+
|
247 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
248 |
+
You are an expert information analyst specializing in search result evaluation. Your mission is to identify the highest-quality, most relevant sources that will enable a comprehensive answer to the user's question.
|
249 |
+
|
250 |
+
**Your Analysis Framework:**
|
251 |
+
|
252 |
+
**1. Relevance Assessment (40% weight):**
|
253 |
+
- How directly does the content address the user's specific question?
|
254 |
+
- Does it contain factual information needed for the answer?
|
255 |
+
- Is it focused on the core topic or just tangentially related?
|
256 |
+
|
257 |
+
**2. Source Quality & Authority (25% weight):**
|
258 |
+
- Is this from a credible, authoritative source?
|
259 |
+
- Does the source have expertise in this domain?
|
260 |
+
- Is it from official organizations, established media, academic institutions, or verified experts?
|
261 |
+
|
262 |
+
**3. Information Completeness (20% weight):**
|
263 |
+
- Does the source provide comprehensive coverage of the topic?
|
264 |
+
- Are there specific details, data, or insights that add value?
|
265 |
+
- Does it cover multiple aspects of the question?
|
266 |
+
|
267 |
+
**4. Recency & Timeliness (10% weight):**
|
268 |
+
- Is the information current and up-to-date?
|
269 |
+
- For time-sensitive topics, prioritize recent sources
|
270 |
+
- For established facts, older authoritative sources are acceptable
|
271 |
+
|
272 |
+
**5. Strategic Value (5% weight):**
|
273 |
+
- Does this complement other selected sources well?
|
274 |
+
- Does it provide unique perspectives or fill information gaps?
|
275 |
+
|
276 |
+
**Task Instructions:**
|
277 |
+
1. Carefully analyze each search result against these criteria
|
278 |
+
2. Consider how the results work together to provide comprehensive coverage
|
279 |
+
3. Select exactly 5 results that will enable the best possible answer
|
280 |
+
4. Prioritize quality over quantity - better to have fewer excellent sources
|
281 |
+
|
282 |
+
**Output Format:** Return only the numbers of your selected results, comma-separated (e.g., "1, 3, 7, 12, 14")
|
283 |
+
|
284 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
285 |
+
**Original User Question:** {user_query}
|
286 |
+
|
287 |
+
**Context - Generated Search Queries:**
|
288 |
+
{queries_text}
|
289 |
+
|
290 |
+
**Search Results for Analysis:**
|
291 |
+
{results_text}
|
292 |
+
|
293 |
+
**Your Selection (5 most valuable results):**
|
294 |
+
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
295 |
+
|
296 |
+
try:
|
297 |
+
response = search_pipeline(prompt, max_new_tokens=300, temperature=0.1)
|
298 |
+
generated_text = response[0]['generated_text']
|
299 |
+
|
300 |
+
# Extract assistant's response
|
301 |
+
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
|
302 |
+
thinking, cleaned_response = extract_thinking_and_response(assistant_response)
|
303 |
+
|
304 |
+
# Extract numbers
|
305 |
+
numbers = re.findall(r'\d+', cleaned_response)
|
306 |
+
selected_indices = [int(n) - 1 for n in numbers if int(n) <= len(search_results)]
|
307 |
+
|
308 |
+
return [search_results[i] for i in selected_indices if 0 <= i < len(search_results)][:5], thinking
|
309 |
+
except Exception as e:
|
310 |
+
print(f"Error filtering results: {e}")
|
311 |
+
return search_results[:5], "" # Fallback to first 5 results
|
312 |
+
|
313 |
+
@spaces.GPU
|
314 |
+
def generate_final_answer(user_query: str, generated_queries: List[str], all_search_results: List[Dict], selected_results: List[Dict]) -> Tuple[str, str]:
|
315 |
+
"""Generate final answer based on complete search context"""
|
316 |
+
if not selected_results:
|
317 |
+
return "I couldn't find relevant information to answer your question. Please try rephrasing your query.", ""
|
318 |
+
|
319 |
+
# Prepare context from selected results
|
320 |
+
selected_context = ""
|
321 |
+
for i, result in enumerate(selected_results):
|
322 |
+
selected_context += f"**Source {i+1}:** {result.get('title', 'Unknown')}\n"
|
323 |
+
selected_context += f"**Content:** {result.get('body', 'No content available')}\n"
|
324 |
+
selected_context += f"**URL:** {result.get('href', 'No URL')}\n"
|
325 |
+
selected_context += f"**Found via query:** {result.get('search_query', 'Unknown')}\n\n"
|
326 |
+
|
327 |
+
# Summary of the search process
|
328 |
+
queries_text = "\n".join(f"β’ {q}" for q in generated_queries)
|
329 |
+
process_summary = f"""
|
330 |
+
**Search Process Summary:**
|
331 |
+
- Generated {len(generated_queries)} targeted search queries
|
332 |
+
- Found {len(all_search_results)} total search results
|
333 |
+
- Filtered down to {len(selected_results)} most relevant sources
|
334 |
+
"""
|
335 |
+
|
336 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
337 |
+
You are a world-class research synthesist and expert communicator. You have access to comprehensive search intelligence and must craft the definitive answer to the user's question.
|
338 |
+
|
339 |
+
**Your Complete Context:**
|
340 |
+
- Original user question and intent
|
341 |
+
- Strategic search queries designed to find comprehensive information
|
342 |
+
- Curated high-quality sources selected for maximum relevance and authority
|
343 |
+
- Full visibility into the research methodology used
|
344 |
+
|
345 |
+
**Answer Quality Standards:**
|
346 |
+
|
347 |
+
π― **Precision & Relevance (25%)**
|
348 |
+
- Address the user's exact question directly and completely
|
349 |
+
- Stay focused on their specific information needs
|
350 |
+
- Avoid tangential information that doesn't serve the core query
|
351 |
+
|
352 |
+
π **Source Integration & Synthesis (25%)**
|
353 |
+
- Weave information from multiple sources into a cohesive narrative
|
354 |
+
- Identify patterns, agreements, and contradictions across sources
|
355 |
+
- Present a unified understanding rather than separate source summaries
|
356 |
+
|
357 |
+
π **Accuracy & Verification (20%)**
|
358 |
+
- Use only information explicitly stated in the provided sources
|
359 |
+
- Clearly attribute claims to specific sources with citations
|
360 |
+
- Acknowledge when information is limited or when sources conflict
|
361 |
+
|
362 |
+
π **Structure & Clarity (15%)**
|
363 |
+
- Organize information logically with clear flow
|
364 |
+
- Use headings, bullet points, or sections when helpful
|
365 |
+
- Write in clear, accessible language appropriate for the topic
|
366 |
+
|
367 |
+
π **Completeness & Context (10%)**
|
368 |
+
- Provide sufficient background context for understanding
|
369 |
+
- Address multiple dimensions of the question when relevant
|
370 |
+
- Explain significance and implications of the findings
|
371 |
+
|
372 |
+
β‘ **Transparency & Limitations (5%)**
|
373 |
+
- Be honest about gaps in available information
|
374 |
+
- Note if search results don't fully address certain aspects
|
375 |
+
- Distinguish between established facts and emerging information
|
376 |
+
|
377 |
+
**Citation Format:**
|
378 |
+
- When referencing specific information: [Source Title](URL)
|
379 |
+
- For direct quotes: "Quote text" - [Source Title](URL)
|
380 |
+
- Include a "Sources" section at the end with all referenced URLs
|
381 |
+
|
382 |
+
**Response Structure:**
|
383 |
+
1. **Direct Answer** - Lead with a clear, concise response to the user's question
|
384 |
+
2. **Detailed Analysis** - Comprehensive exploration with evidence and citations
|
385 |
+
3. **Key Insights** - Important takeaways or implications
|
386 |
+
4. **Sources** - List of referenced URLs for further reading
|
387 |
+
|
388 |
+
<|eot_id|><|start_header_id|>user<|end_header_id|>
|
389 |
+
**Original User Question:** {user_query}
|
390 |
+
|
391 |
+
**Research Intelligence:**
|
392 |
+
{queries_text}
|
393 |
+
|
394 |
+
{process_summary}
|
395 |
+
|
396 |
+
**Curated Source Material:**
|
397 |
+
{selected_context}
|
398 |
+
|
399 |
+
**Task:** Provide the definitive, well-sourced answer to this question using your complete research context.
|
400 |
+
|
401 |
+
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
402 |
+
|
403 |
+
try:
|
404 |
+
response = search_pipeline(prompt, max_new_tokens=12288, temperature=0.2) # Even higher for comprehensive answers
|
405 |
+
generated_text = response[0]['generated_text']
|
406 |
+
|
407 |
+
# Extract assistant's response
|
408 |
+
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
|
409 |
+
thinking, answer = extract_thinking_and_response(assistant_response)
|
410 |
+
|
411 |
+
return answer, thinking
|
412 |
+
except Exception as e:
|
413 |
+
print(f"Error generating final answer: {e}")
|
414 |
+
return "I encountered an error while processing the search results. Please try again.", ""
|
415 |
+
|
416 |
+
def search_agent_workflow(user_query: str, progress=gr.Progress()) -> Tuple[str, str, str]:
|
417 |
+
"""Main workflow that orchestrates the search agent"""
|
418 |
+
if not user_query.strip():
|
419 |
+
return "Please enter a search query.", "", ""
|
420 |
+
|
421 |
+
progress(0.1, desc="Initializing...")
|
422 |
+
all_thinking = []
|
423 |
+
|
424 |
+
# Step 1: Generate search queries
|
425 |
+
progress(0.2, desc="Generating search queries...")
|
426 |
+
queries, thinking1 = generate_search_queries(user_query)
|
427 |
+
if thinking1:
|
428 |
+
all_thinking.append(f"**Query Generation:**\n{thinking1}")
|
429 |
+
queries_text = "Generated queries:\n" + "\n".join(f"β’ {q}" for q in queries)
|
430 |
+
|
431 |
+
# Step 2: Search the web
|
432 |
+
progress(0.4, desc="Searching the web...")
|
433 |
+
search_results = search_web(queries)
|
434 |
+
|
435 |
+
if not search_results:
|
436 |
+
return "No search results found. Please try a different query.", queries_text, "\n\n".join(all_thinking)
|
437 |
+
|
438 |
+
# Step 3: Filter relevant results
|
439 |
+
progress(0.6, desc="Filtering relevant results...")
|
440 |
+
relevant_results, thinking2 = filter_relevant_results(user_query, queries, search_results)
|
441 |
+
if thinking2:
|
442 |
+
all_thinking.append(f"**Result Filtering:**\n{thinking2}")
|
443 |
+
|
444 |
+
# Step 4: Generate final answer
|
445 |
+
progress(0.8, desc="Generating comprehensive answer...")
|
446 |
+
final_answer, thinking3 = generate_final_answer(user_query, queries, search_results, relevant_results)
|
447 |
+
if thinking3:
|
448 |
+
all_thinking.append(f"**Answer Generation:**\n{thinking3}")
|
449 |
+
|
450 |
+
progress(1.0, desc="Complete!")
|
451 |
+
|
452 |
+
# Prepare debug info
|
453 |
+
debug_info = f"{queries_text}\n\nSelected {len(relevant_results)} relevant sources:\n"
|
454 |
+
for i, result in enumerate(relevant_results):
|
455 |
+
debug_info += f"{i+1}. {result.get('title', 'No title')} - {result.get('href', 'No URL')}\n"
|
456 |
+
|
457 |
+
thinking_display = "\n\n".join(all_thinking) if all_thinking else "No thinking process recorded."
|
458 |
+
|
459 |
+
return final_answer, debug_info, thinking_display
|
460 |
+
|
461 |
+
# Custom CSS for dark blue theme and mobile responsiveness
|
462 |
+
custom_css = """
|
463 |
+
/* Dark blue theme */
|
464 |
+
:root {
|
465 |
+
--primary-bg: #0a1628;
|
466 |
+
--secondary-bg: #1e3a5f;
|
467 |
+
--accent-bg: #2563eb;
|
468 |
+
--text-primary: #f8fafc;
|
469 |
+
--text-secondary: #cbd5e1;
|
470 |
+
--border-color: #334155;
|
471 |
+
--input-bg: #1e293b;
|
472 |
+
--button-bg: #3b82f6;
|
473 |
+
--button-hover: #2563eb;
|
474 |
+
}
|
475 |
+
|
476 |
+
/* Global styles */
|
477 |
+
.gradio-container {
|
478 |
+
background: linear-gradient(135deg, var(--primary-bg) 0%, var(--secondary-bg) 100%) !important;
|
479 |
+
color: var(--text-primary) !important;
|
480 |
+
font-family: 'Inter', 'Segoe UI', system-ui, sans-serif !important;
|
481 |
+
}
|
482 |
+
|
483 |
+
/* Mobile responsiveness */
|
484 |
+
@media (max-width: 768px) {
|
485 |
+
.gradio-container {
|
486 |
+
padding: 10px !important;
|
487 |
+
}
|
488 |
+
|
489 |
+
.gr-form {
|
490 |
+
gap: 15px !important;
|
491 |
+
}
|
492 |
+
|
493 |
+
.gr-button {
|
494 |
+
font-size: 16px !important;
|
495 |
+
padding: 12px 20px !important;
|
496 |
+
}
|
497 |
+
}
|
498 |
+
|
499 |
+
/* Input styling */
|
500 |
+
.gr-textbox textarea, .gr-textbox input {
|
501 |
+
background: var(--input-bg) !important;
|
502 |
+
border: 1px solid var(--border-color) !important;
|
503 |
+
color: var(--text-primary) !important;
|
504 |
+
border-radius: 8px !important;
|
505 |
+
}
|
506 |
+
|
507 |
+
/* Button styling */
|
508 |
+
.gr-button {
|
509 |
+
background: linear-gradient(135deg, var(--button-bg) 0%, var(--accent-bg) 100%) !important;
|
510 |
+
color: white !important;
|
511 |
+
border: none !important;
|
512 |
+
border-radius: 8px !important;
|
513 |
+
font-weight: 600 !important;
|
514 |
+
transition: all 0.3s ease !important;
|
515 |
+
}
|
516 |
+
|
517 |
+
.gr-button:hover {
|
518 |
+
background: linear-gradient(135deg, var(--button-hover) 0%, var(--button-bg) 100%) !important;
|
519 |
+
transform: translateY(-1px) !important;
|
520 |
+
box-shadow: 0 4px 12px rgba(59, 130, 246, 0.3) !important;
|
521 |
+
}
|
522 |
+
|
523 |
+
/* Output styling */
|
524 |
+
.gr-markdown, .gr-textbox {
|
525 |
+
background: var(--input-bg) !important;
|
526 |
+
border: 1px solid var(--border-color) !important;
|
527 |
+
border-radius: 8px !important;
|
528 |
+
color: var(--text-primary) !important;
|
529 |
+
}
|
530 |
+
|
531 |
+
/* Header styling */
|
532 |
+
.gr-markdown h1 {
|
533 |
+
color: var(--accent-bg) !important;
|
534 |
+
text-align: center !important;
|
535 |
+
margin-bottom: 20px !important;
|
536 |
+
font-size: 2.5rem !important;
|
537 |
+
font-weight: 700 !important;
|
538 |
+
}
|
539 |
+
|
540 |
+
/* Thinking section styling */
|
541 |
+
#thinking-output {
|
542 |
+
background: var(--secondary-bg) !important;
|
543 |
+
border: 1px solid var(--border-color) !important;
|
544 |
+
border-radius: 8px !important;
|
545 |
+
padding: 15px !important;
|
546 |
+
font-family: 'Fira Code', 'Monaco', monospace !important;
|
547 |
+
font-size: 0.9rem !important;
|
548 |
+
line-height: 1.4 !important;
|
549 |
+
}
|
550 |
+
|
551 |
+
/* Loading animation */
|
552 |
+
.gr-loading {
|
553 |
+
background: var(--secondary-bg) !important;
|
554 |
+
border-radius: 8px !important;
|
555 |
+
}
|
556 |
+
|
557 |
+
/* Scrollbar styling */
|
558 |
+
::-webkit-scrollbar {
|
559 |
+
width: 8px;
|
560 |
+
}
|
561 |
+
|
562 |
+
::-webkit-scrollbar-track {
|
563 |
+
background: var(--primary-bg);
|
564 |
+
}
|
565 |
+
|
566 |
+
::-webkit-scrollbar-thumb {
|
567 |
+
background: var(--accent-bg);
|
568 |
+
border-radius: 4px;
|
569 |
+
}
|
570 |
+
|
571 |
+
::-webkit-scrollbar-thumb:hover {
|
572 |
+
background: var(--button-hover);
|
573 |
+
}
|
574 |
+
"""
|
575 |
+
|
576 |
+
def create_interface():
|
577 |
+
"""Create the Gradio interface"""
|
578 |
+
with gr.Blocks(
|
579 |
+
theme=gr.themes.Base(
|
580 |
+
primary_hue="blue",
|
581 |
+
secondary_hue="slate",
|
582 |
+
neutral_hue="slate",
|
583 |
+
text_size="lg",
|
584 |
+
spacing_size="lg",
|
585 |
+
radius_size="md"
|
586 |
+
),
|
587 |
+
css=custom_css,
|
588 |
+
title="Just search - AI Search Agent",
|
589 |
+
head="<meta name='viewport' content='width=device-width, initial-scale=1.0'>"
|
590 |
+
) as interface:
|
591 |
+
|
592 |
+
gr.Markdown("# π Just search", elem_id="header")
|
593 |
+
gr.Markdown(
|
594 |
+
"*Part of the Just, AKA Simple series*\n\n"
|
595 |
+
"**Intelligent search agent powered by Menlo/Lucy-128k**\n\n"
|
596 |
+
"Ask any question and get comprehensive answers from the web.",
|
597 |
+
elem_id="description"
|
598 |
+
)
|
599 |
+
|
600 |
+
with gr.Row():
|
601 |
+
with gr.Column(scale=4):
|
602 |
+
query_input = gr.Textbox(
|
603 |
+
label="Your Question",
|
604 |
+
placeholder="Ask me anything... (e.g., 'What are the latest developments in AI?')",
|
605 |
+
lines=2,
|
606 |
+
elem_id="query-input"
|
607 |
+
)
|
608 |
+
with gr.Column(scale=1):
|
609 |
+
search_btn = gr.Button(
|
610 |
+
"π Search",
|
611 |
+
variant="primary",
|
612 |
+
size="lg",
|
613 |
+
elem_id="search-button"
|
614 |
+
)
|
615 |
+
|
616 |
+
with gr.Row():
|
617 |
+
answer_output = gr.Markdown(
|
618 |
+
label="Answer",
|
619 |
+
elem_id="answer-output",
|
620 |
+
height=400
|
621 |
+
)
|
622 |
+
|
623 |
+
with gr.Accordion("π€ AI Thinking Process", open=False):
|
624 |
+
thinking_output = gr.Markdown(
|
625 |
+
label="Model's Chain of Thought",
|
626 |
+
elem_id="thinking-output",
|
627 |
+
height=300
|
628 |
+
)
|
629 |
+
|
630 |
+
with gr.Accordion("π§ Debug Info", open=False):
|
631 |
+
debug_output = gr.Textbox(
|
632 |
+
label="Search Process Details",
|
633 |
+
lines=8,
|
634 |
+
elem_id="debug-output"
|
635 |
+
)
|
636 |
+
|
637 |
+
# Event handlers
|
638 |
+
search_btn.click(
|
639 |
+
fn=search_agent_workflow,
|
640 |
+
inputs=[query_input],
|
641 |
+
outputs=[answer_output, debug_output, thinking_output],
|
642 |
+
show_progress=True
|
643 |
+
)
|
644 |
+
|
645 |
+
query_input.submit(
|
646 |
+
fn=search_agent_workflow,
|
647 |
+
inputs=[query_input],
|
648 |
+
outputs=[answer_output, debug_output, thinking_output],
|
649 |
+
show_progress=True
|
650 |
+
)
|
651 |
+
|
652 |
+
# Example queries
|
653 |
+
gr.Examples(
|
654 |
+
examples=[
|
655 |
+
["What are the latest breakthroughs in quantum computing?"],
|
656 |
+
["How does climate change affect ocean currents?"],
|
657 |
+
["What are the best practices for sustainable agriculture?"],
|
658 |
+
["Explain the recent developments in renewable energy technology"],
|
659 |
+
["What are the health benefits of the Mediterranean diet?"]
|
660 |
+
],
|
661 |
+
inputs=query_input,
|
662 |
+
outputs=[answer_output, debug_output, thinking_output],
|
663 |
+
fn=search_agent_workflow,
|
664 |
+
cache_examples=False
|
665 |
+
)
|
666 |
+
|
667 |
+
gr.Markdown(
|
668 |
+
"---\n**Note:** This search agent generates multiple queries, searches the web, "
|
669 |
+
"filters results for relevance, and provides comprehensive answers. "
|
670 |
+
"Results are sourced from DuckDuckGo search."
|
671 |
+
)
|
672 |
+
|
673 |
+
return interface
|
674 |
+
|
675 |
+
def main():
|
676 |
+
"""Main function to initialize and launch the app"""
|
677 |
+
print("π Initializing Just search...")
|
678 |
+
|
679 |
+
# Initialize the model
|
680 |
+
if not initialize_model():
|
681 |
+
print("β Failed to initialize model. Please check your setup.")
|
682 |
+
return
|
683 |
+
|
684 |
+
print("β
Model initialized successfully!")
|
685 |
+
print("π Creating interface...")
|
686 |
+
|
687 |
+
# Create and launch the interface
|
688 |
+
interface = create_interface()
|
689 |
+
|
690 |
+
print("π Just search is ready!")
|
691 |
+
interface.launch(
|
692 |
+
server_name="0.0.0.0",
|
693 |
+
server_port=7860,
|
694 |
+
share=True,
|
695 |
+
show_error=True,
|
696 |
+
debug=True
|
697 |
+
)
|
698 |
+
|
699 |
+
if __name__ == "__main__":
|
700 |
+
main()
|