Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load the pre-trained fast food classifier model from Hugging Face
|
6 |
+
classifier = pipeline(task="image-classification", model="AryanKaushik/fastfood-classifier")
|
7 |
+
|
8 |
+
st.title("🍔 Fast Food Classifier")
|
9 |
+
st.write("Upload an image and find out if it's a burger, pizza, cupcake, fries, or waffle!")
|
10 |
+
|
11 |
+
# Upload an image
|
12 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
13 |
+
|
14 |
+
if uploaded_file is not None:
|
15 |
+
col1, col2 = st.columns(2)
|
16 |
+
|
17 |
+
# Show the image
|
18 |
+
image = Image.open(uploaded_file)
|
19 |
+
col1.image(image, caption="Uploaded Image", use_column_width=True)
|
20 |
+
|
21 |
+
# Run prediction
|
22 |
+
predictions = classifier(image)
|
23 |
+
|
24 |
+
# Show results
|
25 |
+
col2.header("Prediction Results")
|
26 |
+
for p in predictions:
|
27 |
+
col2.subheader(f"{p['label']}: {round(p['score'] * 100, 2)}%")
|