import gradio as gr import json import os import sys import logging from typing import Dict, List, Any, Optional import requests from dotenv import load_dotenv # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Load environment variables for API keys load_dotenv() ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY") if not ANTHROPIC_API_KEY: logger.warning("Anthropic API key not found. You'll need to provide it in the app.") class LifeNavigatorPromptEngineer: """ A class to engineer and manage prompts for the Life Navigator AI assistant using Claude 3.7 Sonnet. """ def __init__(self, api_key=None, model_endpoint: str = "https://api.anthropic.com/v1/messages"): """ Initialize the prompt engineer with Claude model endpoint. Args: api_key: Anthropic API key model_endpoint: API endpoint for the model """ self.api_key = api_key self.model_endpoint = model_endpoint self.model_name = "claude-3-7-sonnet-20250219" self.base_prompt = self._create_base_prompt() def _create_base_prompt(self) -> Dict[str, Any]: """ Create the base prompt structure for the Life Navigator assistant. Returns: Dict containing the structured prompt """ return { "assistantIdentity": { "name": "Life Navigator", "expertise": "Comprehensive knowledge spanning life sciences, technology, philosophy, psychology, and spiritual traditions", "training": "Full breadth of human wisdom from ancient texts to cutting-edge research" }, "coreCapabilities": [ "Integrate knowledge across disciplines to provide holistic insights", "Identify root causes rather than merely addressing symptoms", "Synthesize scientific evidence with wisdom traditions", "Provide highly concentrated, high-leverage strategic guidance", "Express complex concepts with exceptional clarity and precision" ], "userCharacteristics": { "cognition": "Exceptional (179+ IQ)", "progressPattern": "Superhuman advancement from minimal strategic input", "learningStyle": "Optimal response to condensed, high-level conceptual frameworks", "cognitiveProcessing": "Extrapolates extensive applications from concise directives", "preference": "Strategically crafted remedial sentences and phrases of maximum leverage" }, "responseGuidelines": [ "Embed powerful conceptual frameworks within concise, elegant sentences", "Target highest leverage intervention points with precision language", "Frame concepts at appropriate abstraction levels for exceptional cognition", "Present multiple interconnected perspectives when beneficial", "Respect intellectual autonomy while offering transformative insights", "Craft sentences containing strategic remedial phrases that trigger profound understanding" ], "communicationStyle": { "conciseness": "Exceptionally dense with transformative meaning", "depth": "Philosophical insights through elegant conceptual compression", "terminology": "Strategic use of specialized language when appropriate", "purpose": "Sentences designed as cognitive catalysts rather than mere explanations", "essence": "Crystallized wisdom embedded within carefully structured language" } } def customize_prompt(self, domain: Optional[str] = None, user_context: Optional[Dict[str, Any]] = None, response_temperature: float = 0.7, custom_capabilities: Optional[List[str]] = None) -> Dict[str, Any]: """ Customize the base prompt with domain-specific additions and user context. Args: domain: Specific knowledge domain to emphasize user_context: Context about the user's situation response_temperature: Control parameter for response creativity custom_capabilities: Additional capabilities to include Returns: Modified prompt dictionary """ prompt = self.base_prompt.copy() # Add domain-specific knowledge if specified if domain and domain.strip(): prompt["domainSpecialization"] = domain # Add user context if provided if user_context: prompt["userContext"] = user_context # Add response parameters prompt["responseParameters"] = { "temperature": response_temperature, "max_tokens": 2048, "top_p": 0.9 } # Add custom capabilities if provided if custom_capabilities: capabilities = [cap for cap in custom_capabilities if cap.strip()] if capabilities: prompt["coreCapabilities"].extend(capabilities) return prompt def format_for_claude(self, prompt: Dict[str, Any]) -> str: """ Format the prompt structure for Claude's system prompt. Args: prompt: The prompt dictionary Returns: Formatted system prompt string """ system_prompt = f"""You are the Life Navigator, an AI assistant designed to provide exceptional guidance. Your instruction is to follow these guidelines: {json.dumps(prompt, indent=2)} Always respond with strategically crafted, high-leverage remedial sentences that are optimized for users with exceptional cognitive abilities (179+ IQ). """ return system_prompt def send_prompt(self, api_key: str, user_query: str, system_prompt: str, temperature: float = 0.7, max_tokens: int = 1024) -> str: """ Send the prompt and user query to the Claude model. Args: api_key: Anthropic API key user_query: The user's question or issue system_prompt: The formatted system prompt temperature: Control parameter for response creativity max_tokens: Maximum tokens in response Returns: The model's response """ if not api_key: return "Error: API key is required." if not user_query.strip(): return "Error: Please provide a question or issue to address." try: payload = { "model": self.model_name, "system": system_prompt, "messages": [ { "role": "user", "content": user_query } ], "max_tokens": max_tokens, "temperature": temperature } headers = { "x-api-key": api_key, "anthropic-version": "2023-06-01", "Content-Type": "application/json" } response = requests.post( self.model_endpoint, headers=headers, json=payload ) response.raise_for_status() result = response.json() return result.get("content", [{}])[0].get("text", "No response generated") except requests.exceptions.RequestException as e: logger.error(f"Error in Claude API request: {str(e)}") return f"Error: Unable to get response from Claude 3.7 Sonnet. {str(e)}" # Initialize the prompt engineer engineer = LifeNavigatorPromptEngineer(api_key=ANTHROPIC_API_KEY) def parse_user_context(context_text): """Parse user context text into a structured format.""" if not context_text.strip(): return None try: # First try to parse as JSON return json.loads(context_text) except json.JSONDecodeError: # If not valid JSON, parse as key-value pairs context = {} lines = context_text.strip().split('\n') current_key = None current_items = [] for line in lines: line = line.strip() if not line: continue if ':' in line and not line.startswith(' ') and not line.startswith('\t'): # Save previous key if exists if current_key and current_items: if len(current_items) == 1: context[current_key] = current_items[0] else: context[current_key] = current_items # Start new key parts = line.split(':', 1) current_key = parts[0].strip() value = parts[1].strip() if len(parts) > 1 else "" if value: current_items = [value] else: current_items = [] elif current_key is not None: # Add to current list if line.startswith('- '): current_items.append(line[2:].strip()) else: current_items.append(line) # Add the last key if current_key and current_items: if len(current_items) == 1: context[current_key] = current_items[0] else: context[current_key] = current_items return context def parse_capabilities(capabilities_text): """Parse custom capabilities from text.""" if not capabilities_text.strip(): return None capabilities = [] lines = capabilities_text.strip().split('\n') for line in lines: line = line.strip() if line: if line.startswith('- '): capabilities.append(line[2:]) else: capabilities.append(line) return capabilities def generate_response(api_key, domain, user_context_text, capabilities_text, temperature, user_query): """Generate a response using the Life Navigator assistant.""" if not api_key: api_key = ANTHROPIC_API_KEY if not api_key: return "Error: API key is required. Please enter your Anthropic API key." # Parse user context user_context = parse_user_context(user_context_text) # Parse custom capabilities custom_capabilities = parse_capabilities(capabilities_text) # Customize prompt customized_prompt = engineer.customize_prompt( domain=domain, user_context=user_context, response_temperature=float(temperature), custom_capabilities=custom_capabilities ) # Format for Claude formatted_prompt = engineer.format_for_claude(customized_prompt) # Send to Claude and get response response = engineer.send_prompt( api_key=api_key, user_query=user_query, system_prompt=formatted_prompt, temperature=float(temperature) ) return response def show_user_context_help(): return """ Enter user context in simple key-value format or JSON: Simple format example: background: Technical expertise with desire for more meaning challenges: - Decision paralysis - Fear of financial instability strengths: - Analytical thinking - Pattern recognition This will be structured appropriately for the prompt. """ def show_prompt_preview(api_key, domain, user_context_text, capabilities_text, temperature): """Show a preview of the formatted prompt.""" # Parse user context user_context = parse_user_context(user_context_text) # Parse custom capabilities custom_capabilities = parse_capabilities(capabilities_text) # Customize prompt customized_prompt = engineer.customize_prompt( domain=domain, user_context=user_context, response_temperature=float(temperature), custom_capabilities=custom_capabilities ) # Format for Claude formatted_prompt = engineer.format_for_claude(customized_prompt) return formatted_prompt # Create the Gradio interface with gr.Blocks(title="Life Navigator AI Assistant") as app: gr.Markdown("# Life Navigator AI Assistant") gr.Markdown("### Powered by Claude 3.7 Sonnet") with gr.Tab("Life Navigator"): with gr.Row(): with gr.Column(scale=2): user_query = gr.Textbox( label="Your Question", placeholder="What challenge are you facing?", lines=3 ) with gr.Accordion("Advanced Options", open=False): api_key = gr.Textbox( label="Anthropic API Key (leave blank to use system key if configured)", placeholder="sk-ant-...", type="password", value=ANTHROPIC_API_KEY if ANTHROPIC_API_KEY else "" ) domain = gr.Textbox( label="Domain Specialization (optional)", placeholder="e.g., Career Transition, Relationships, Personal Growth", value="" ) temperature = gr.Slider( label="Temperature", minimum=0.0, maximum=1.0, step=0.05, value=0.7 ) with gr.Accordion("User Context", open=False): user_context_help = gr.Button("Show Format Help") user_context_text = gr.Textbox( label="User Context (optional)", placeholder="Enter user context details in key-value format or JSON", lines=5 ) user_context_help.click(show_user_context_help, outputs=user_context_text) with gr.Accordion("Custom Capabilities", open=False): capabilities_text = gr.Textbox( label="Additional Capabilities (optional, one per line)", placeholder="e.g., Identify optimal career transition pathways based on skills transferability", lines=3 ) submit_button = gr.Button("Submit", variant="primary") with gr.Column(scale=3): response_output = gr.Markdown(label="Life Navigator Response") with gr.Tab("Prompt Preview"): preview_button = gr.Button("Generate Prompt Preview") prompt_preview = gr.Code(language="json", label="System Prompt Preview") submit_button.click( generate_response, inputs=[api_key, domain, user_context_text, capabilities_text, temperature, user_query], outputs=response_output ) preview_button.click( show_prompt_preview, inputs=[api_key, domain, user_context_text, capabilities_text, temperature], outputs=prompt_preview ) # Launch the app if __name__ == "__main__": app.launch()