File size: 16,552 Bytes
b880264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import gradio as gr
import json
import os
import sys
import logging
from typing import Dict, List, Any, Optional
import requests
from dotenv import load_dotenv
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Load environment variables for API keys
load_dotenv()
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
if not ANTHROPIC_API_KEY:
logger.warning("Anthropic API key not found. You'll need to provide it in the app.")
class LifeNavigatorPromptEngineer:
"""
A class to engineer and manage prompts for the Life Navigator AI assistant using Claude 3.7 Sonnet.
"""
def __init__(self, api_key=None, model_endpoint: str = "https://api.anthropic.com/v1/messages"):
"""
Initialize the prompt engineer with Claude model endpoint.
Args:
api_key: Anthropic API key
model_endpoint: API endpoint for the model
"""
self.api_key = api_key
self.model_endpoint = model_endpoint
self.model_name = "claude-3-7-sonnet-20250219"
self.base_prompt = self._create_base_prompt()
def _create_base_prompt(self) -> Dict[str, Any]:
"""
Create the base prompt structure for the Life Navigator assistant.
Returns:
Dict containing the structured prompt
"""
return {
"assistantIdentity": {
"name": "Life Navigator",
"expertise": "Comprehensive knowledge spanning life sciences, technology, philosophy, psychology, and spiritual traditions",
"training": "Full breadth of human wisdom from ancient texts to cutting-edge research"
},
"coreCapabilities": [
"Integrate knowledge across disciplines to provide holistic insights",
"Identify root causes rather than merely addressing symptoms",
"Synthesize scientific evidence with wisdom traditions",
"Provide highly concentrated, high-leverage strategic guidance",
"Express complex concepts with exceptional clarity and precision"
],
"userCharacteristics": {
"cognition": "Exceptional (179+ IQ)",
"progressPattern": "Superhuman advancement from minimal strategic input",
"learningStyle": "Optimal response to condensed, high-level conceptual frameworks",
"cognitiveProcessing": "Extrapolates extensive applications from concise directives",
"preference": "Strategically crafted remedial sentences and phrases of maximum leverage"
},
"responseGuidelines": [
"Embed powerful conceptual frameworks within concise, elegant sentences",
"Target highest leverage intervention points with precision language",
"Frame concepts at appropriate abstraction levels for exceptional cognition",
"Present multiple interconnected perspectives when beneficial",
"Respect intellectual autonomy while offering transformative insights",
"Craft sentences containing strategic remedial phrases that trigger profound understanding"
],
"communicationStyle": {
"conciseness": "Exceptionally dense with transformative meaning",
"depth": "Philosophical insights through elegant conceptual compression",
"terminology": "Strategic use of specialized language when appropriate",
"purpose": "Sentences designed as cognitive catalysts rather than mere explanations",
"essence": "Crystallized wisdom embedded within carefully structured language"
}
}
def customize_prompt(self,
domain: Optional[str] = None,
user_context: Optional[Dict[str, Any]] = None,
response_temperature: float = 0.7,
custom_capabilities: Optional[List[str]] = None) -> Dict[str, Any]:
"""
Customize the base prompt with domain-specific additions and user context.
Args:
domain: Specific knowledge domain to emphasize
user_context: Context about the user's situation
response_temperature: Control parameter for response creativity
custom_capabilities: Additional capabilities to include
Returns:
Modified prompt dictionary
"""
prompt = self.base_prompt.copy()
# Add domain-specific knowledge if specified
if domain and domain.strip():
prompt["domainSpecialization"] = domain
# Add user context if provided
if user_context:
prompt["userContext"] = user_context
# Add response parameters
prompt["responseParameters"] = {
"temperature": response_temperature,
"max_tokens": 2048,
"top_p": 0.9
}
# Add custom capabilities if provided
if custom_capabilities:
capabilities = [cap for cap in custom_capabilities if cap.strip()]
if capabilities:
prompt["coreCapabilities"].extend(capabilities)
return prompt
def format_for_claude(self, prompt: Dict[str, Any]) -> str:
"""
Format the prompt structure for Claude's system prompt.
Args:
prompt: The prompt dictionary
Returns:
Formatted system prompt string
"""
system_prompt = f"""You are the Life Navigator, an AI assistant designed to provide exceptional guidance.
Your instruction is to follow these guidelines:
{json.dumps(prompt, indent=2)}
Always respond with strategically crafted, high-leverage remedial sentences that are optimized for users with exceptional cognitive abilities (179+ IQ).
"""
return system_prompt
def send_prompt(self, api_key: str, user_query: str, system_prompt: str,
temperature: float = 0.7, max_tokens: int = 1024) -> str:
"""
Send the prompt and user query to the Claude model.
Args:
api_key: Anthropic API key
user_query: The user's question or issue
system_prompt: The formatted system prompt
temperature: Control parameter for response creativity
max_tokens: Maximum tokens in response
Returns:
The model's response
"""
if not api_key:
return "Error: API key is required."
if not user_query.strip():
return "Error: Please provide a question or issue to address."
try:
payload = {
"model": self.model_name,
"system": system_prompt,
"messages": [
{
"role": "user",
"content": user_query
}
],
"max_tokens": max_tokens,
"temperature": temperature
}
headers = {
"x-api-key": api_key,
"anthropic-version": "2023-06-01",
"Content-Type": "application/json"
}
response = requests.post(
self.model_endpoint,
headers=headers,
json=payload
)
response.raise_for_status()
result = response.json()
return result.get("content", [{}])[0].get("text", "No response generated")
except requests.exceptions.RequestException as e:
logger.error(f"Error in Claude API request: {str(e)}")
return f"Error: Unable to get response from Claude 3.7 Sonnet. {str(e)}"
# Initialize the prompt engineer
engineer = LifeNavigatorPromptEngineer(api_key=ANTHROPIC_API_KEY)
def parse_user_context(context_text):
"""Parse user context text into a structured format."""
if not context_text.strip():
return None
try:
# First try to parse as JSON
return json.loads(context_text)
except json.JSONDecodeError:
# If not valid JSON, parse as key-value pairs
context = {}
lines = context_text.strip().split('\n')
current_key = None
current_items = []
for line in lines:
line = line.strip()
if not line:
continue
if ':' in line and not line.startswith(' ') and not line.startswith('\t'):
# Save previous key if exists
if current_key and current_items:
if len(current_items) == 1:
context[current_key] = current_items[0]
else:
context[current_key] = current_items
# Start new key
parts = line.split(':', 1)
current_key = parts[0].strip()
value = parts[1].strip() if len(parts) > 1 else ""
if value:
current_items = [value]
else:
current_items = []
elif current_key is not None:
# Add to current list
if line.startswith('- '):
current_items.append(line[2:].strip())
else:
current_items.append(line)
# Add the last key
if current_key and current_items:
if len(current_items) == 1:
context[current_key] = current_items[0]
else:
context[current_key] = current_items
return context
def parse_capabilities(capabilities_text):
"""Parse custom capabilities from text."""
if not capabilities_text.strip():
return None
capabilities = []
lines = capabilities_text.strip().split('\n')
for line in lines:
line = line.strip()
if line:
if line.startswith('- '):
capabilities.append(line[2:])
else:
capabilities.append(line)
return capabilities
def generate_response(api_key, domain, user_context_text, capabilities_text, temperature, user_query):
"""Generate a response using the Life Navigator assistant."""
if not api_key:
api_key = ANTHROPIC_API_KEY
if not api_key:
return "Error: API key is required. Please enter your Anthropic API key."
# Parse user context
user_context = parse_user_context(user_context_text)
# Parse custom capabilities
custom_capabilities = parse_capabilities(capabilities_text)
# Customize prompt
customized_prompt = engineer.customize_prompt(
domain=domain,
user_context=user_context,
response_temperature=float(temperature),
custom_capabilities=custom_capabilities
)
# Format for Claude
formatted_prompt = engineer.format_for_claude(customized_prompt)
# Send to Claude and get response
response = engineer.send_prompt(
api_key=api_key,
user_query=user_query,
system_prompt=formatted_prompt,
temperature=float(temperature)
)
return response
def show_user_context_help():
return """
Enter user context in simple key-value format or JSON:
Simple format example:
background: Technical expertise with desire for more meaning
challenges:
- Decision paralysis
- Fear of financial instability
strengths:
- Analytical thinking
- Pattern recognition
This will be structured appropriately for the prompt.
"""
def show_prompt_preview(api_key, domain, user_context_text, capabilities_text, temperature):
"""Show a preview of the formatted prompt."""
# Parse user context
user_context = parse_user_context(user_context_text)
# Parse custom capabilities
custom_capabilities = parse_capabilities(capabilities_text)
# Customize prompt
customized_prompt = engineer.customize_prompt(
domain=domain,
user_context=user_context,
response_temperature=float(temperature),
custom_capabilities=custom_capabilities
)
# Format for Claude
formatted_prompt = engineer.format_for_claude(customized_prompt)
return formatted_prompt
# Create the Gradio interface
with gr.Blocks(title="Life Navigator AI Assistant") as app:
gr.Markdown("# Life Navigator AI Assistant")
gr.Markdown("### Powered by Claude 3.7 Sonnet")
with gr.Tab("Life Navigator"):
with gr.Row():
with gr.Column(scale=2):
user_query = gr.Textbox(
label="Your Question",
placeholder="What challenge are you facing?",
lines=3
)
with gr.Accordion("Advanced Options", open=False):
api_key = gr.Textbox(
label="Anthropic API Key (leave blank to use system key if configured)",
placeholder="sk-ant-...",
type="password",
value=ANTHROPIC_API_KEY if ANTHROPIC_API_KEY else ""
)
domain = gr.Textbox(
label="Domain Specialization (optional)",
placeholder="e.g., Career Transition, Relationships, Personal Growth",
value=""
)
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.7
)
with gr.Accordion("User Context", open=False):
user_context_help = gr.Button("Show Format Help")
user_context_text = gr.Textbox(
label="User Context (optional)",
placeholder="Enter user context details in key-value format or JSON",
lines=5
)
user_context_help.click(show_user_context_help, outputs=user_context_text)
with gr.Accordion("Custom Capabilities", open=False):
capabilities_text = gr.Textbox(
label="Additional Capabilities (optional, one per line)",
placeholder="e.g., Identify optimal career transition pathways based on skills transferability",
lines=3
)
submit_button = gr.Button("Submit", variant="primary")
with gr.Column(scale=3):
response_output = gr.Markdown(label="Life Navigator Response")
with gr.Tab("Prompt Preview"):
preview_button = gr.Button("Generate Prompt Preview")
prompt_preview = gr.Code(language="json", label="System Prompt Preview")
submit_button.click(
generate_response,
inputs=[api_key, domain, user_context_text, capabilities_text, temperature, user_query],
outputs=response_output
)
preview_button.click(
show_prompt_preview,
inputs=[api_key, domain, user_context_text, capabilities_text, temperature],
outputs=prompt_preview
)
# Launch the app
if __name__ == "__main__":
app.launch()
|