Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import openai # GPT API 调用
|
7 |
+
|
8 |
+
# 初始化模型
|
9 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
10 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
11 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
+
|
14 |
+
# GPT API 配置
|
15 |
+
openai.api_key = "your_openai_api_key"
|
16 |
+
|
17 |
+
# 定义功能函数
|
18 |
+
def analyze_images(image_a, image_b):
|
19 |
+
# BLIP生成描述
|
20 |
+
def generate_caption(image):
|
21 |
+
inputs = blip_processor(image, return_tensors="pt")
|
22 |
+
caption = blip_model.generate(**inputs)
|
23 |
+
return blip_processor.decode(caption[0], skip_special_tokens=True)
|
24 |
+
|
25 |
+
# CLIP特征提取
|
26 |
+
def extract_features(image):
|
27 |
+
inputs = clip_processor(images=image, return_tensors="pt")
|
28 |
+
features = clip_model.get_image_features(**inputs)
|
29 |
+
return features.detach().numpy()
|
30 |
+
|
31 |
+
# 加载图片
|
32 |
+
img_a = Image.open(image_a).convert("RGB")
|
33 |
+
img_b = Image.open(image_b).convert("RGB")
|
34 |
+
|
35 |
+
# 生成描述
|
36 |
+
caption_a = generate_caption(img_a)
|
37 |
+
caption_b = generate_caption(img_b)
|
38 |
+
|
39 |
+
# 提取特征
|
40 |
+
features_a = extract_features(img_a)
|
41 |
+
features_b = extract_features(img_b)
|
42 |
+
|
43 |
+
# 计算嵌入相似性
|
44 |
+
cosine_similarity = np.dot(features_a, features_b.T) / (np.linalg.norm(features_a) * np.linalg.norm(features_b))
|
45 |
+
latent_diff = np.abs(features_a - features_b).tolist()
|
46 |
+
|
47 |
+
# GPT API 调用生成文字描述
|
48 |
+
gpt_prompt = (
|
49 |
+
f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n"
|
50 |
+
"请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"
|
51 |
+
)
|
52 |
+
gpt_response = openai.Completion.create(
|
53 |
+
engine="text-davinci-003",
|
54 |
+
prompt=gpt_prompt,
|
55 |
+
max_tokens=150
|
56 |
+
)
|
57 |
+
textual_analysis = gpt_response['choices'][0]['text'].strip()
|
58 |
+
|
59 |
+
# 返回结果
|
60 |
+
return {
|
61 |
+
"caption_a": caption_a,
|
62 |
+
"caption_b": caption_b,
|
63 |
+
"similarity": cosine_similarity[0][0],
|
64 |
+
"latent_diff": latent_diff,
|
65 |
+
"text_analysis": textual_analysis
|
66 |
+
}
|
67 |
+
|
68 |
+
# 定义Gradio界面
|
69 |
+
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("# 图片对比分析工具")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
+
image_a = gr.Image(label="图片A", type="file")
|
75 |
+
with gr.Column():
|
76 |
+
image_b = gr.Image(label="图片B", type="file")
|
77 |
+
|
78 |
+
analyze_button = gr.Button("分析图片")
|
79 |
+
result_caption_a = gr.Textbox(label="图片A描述", interactive=False)
|
80 |
+
result_caption_b = gr.Textbox(label="图片B描述", interactive=False)
|
81 |
+
result_similarity = gr.Number(label="图片相似性", interactive=False)
|
82 |
+
result_latent_diff = gr.DataFrame(label="潜在特征差异", interactive=False)
|
83 |
+
result_text_analysis = gr.Textbox(label="详细分析", interactive=False, lines=5)
|
84 |
+
|
85 |
+
# 分析逻辑
|
86 |
+
def process_analysis(img_a, img_b):
|
87 |
+
results = analyze_images(img_a, img_b)
|
88 |
+
return results["caption_a"], results["caption_b"], results["similarity"], results["latent_diff"], results["text_analysis"]
|
89 |
+
|
90 |
+
analyze_button.click(
|
91 |
+
fn=process_analysis,
|
92 |
+
inputs=[image_a, image_b],
|
93 |
+
outputs=[result_caption_a, result_caption_b, result_similarity, result_latent_diff, result_text_analysis]
|
94 |
+
)
|
95 |
+
|
96 |
+
demo.launch()
|