Spaces:
Sleeping
Sleeping
from typing import Optional, Any, List, Tuple | |
from collections import namedtuple, deque | |
from easydict import EasyDict | |
import numpy as np | |
import torch | |
from ding.envs import BaseEnvManager | |
from ding.utils import build_logger, EasyTimer, SERIAL_COLLECTOR_REGISTRY, dicts_to_lists | |
from ding.torch_utils import to_tensor, to_ndarray | |
from ding.worker.collector.base_serial_collector import ISerialCollector, CachePool, TrajBuffer, INF, \ | |
to_tensor_transitions | |
class LeagueDemoCollector(ISerialCollector): | |
""" | |
Overview: | |
League demo collector, derived from BattleEpisodeSerialCollector, add action probs viz. | |
Interfaces: | |
__init__, reset, reset_env, reset_policy, collect, close | |
Property: | |
envstep | |
""" | |
config = dict(deepcopy_obs=False, transform_obs=False, collect_print_freq=100, get_train_sample=False) | |
def __init__( | |
self, | |
cfg: EasyDict, | |
env: BaseEnvManager = None, | |
policy: List[namedtuple] = None, | |
tb_logger: 'SummaryWriter' = None, # noqa | |
exp_name: Optional[str] = 'default_experiment', | |
instance_name: Optional[str] = 'collector' | |
) -> None: | |
""" | |
Overview: | |
Initialization method. | |
Arguments: | |
- cfg (:obj:`EasyDict`): Config dict | |
- env (:obj:`BaseEnvManager`): the subclass of vectorized env_manager(BaseEnvManager) | |
- policy (:obj:`List[namedtuple]`): the api namedtuple of collect_mode policy | |
- tb_logger (:obj:`SummaryWriter`): tensorboard handle | |
""" | |
self._exp_name = exp_name | |
self._instance_name = instance_name | |
self._collect_print_freq = cfg.collect_print_freq | |
self._deepcopy_obs = cfg.deepcopy_obs | |
self._transform_obs = cfg.transform_obs | |
self._cfg = cfg | |
self._timer = EasyTimer() | |
self._end_flag = False | |
if tb_logger is not None: | |
self._logger, _ = build_logger( | |
path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False | |
) | |
self._tb_logger = tb_logger | |
else: | |
self._logger, self._tb_logger = build_logger( | |
path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name | |
) | |
self._traj_len = float("inf") | |
self.reset(policy, env) | |
def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None: | |
""" | |
Overview: | |
Reset the environment. | |
If _env is None, reset the old environment. | |
If _env is not None, replace the old environment in the collector with the new passed \ | |
in environment and launch. | |
Arguments: | |
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ | |
env_manager(BaseEnvManager) | |
""" | |
if _env is not None: | |
self._env = _env | |
self._env.launch() | |
self._env_num = self._env.env_num | |
else: | |
self._env.reset() | |
def reset_policy(self, _policy: Optional[List[namedtuple]] = None) -> None: | |
""" | |
Overview: | |
Reset the policy. | |
If _policy is None, reset the old policy. | |
If _policy is not None, replace the old policy in the collector with the new passed in policy. | |
Arguments: | |
- policy (:obj:`Optional[List[namedtuple]]`): the api namedtuple of collect_mode policy | |
""" | |
assert hasattr(self, '_env'), "please set env first" | |
if _policy is not None: | |
assert len(_policy) == 2, "1v1 episode collector needs 2 policy, but found {}".format(len(_policy)) | |
self._policy = _policy | |
self._default_n_episode = _policy[0].get_attribute('cfg').collect.get('n_episode', None) | |
self._unroll_len = _policy[0].get_attribute('unroll_len') | |
self._on_policy = _policy[0].get_attribute('cfg').on_policy | |
self._traj_len = INF | |
self._logger.debug( | |
'Set default n_episode mode(n_episode({}), env_num({}), traj_len({}))'.format( | |
self._default_n_episode, self._env_num, self._traj_len | |
) | |
) | |
for p in self._policy: | |
p.reset() | |
def reset(self, _policy: Optional[List[namedtuple]] = None, _env: Optional[BaseEnvManager] = None) -> None: | |
""" | |
Overview: | |
Reset the environment and policy. | |
If _env is None, reset the old environment. | |
If _env is not None, replace the old environment in the collector with the new passed \ | |
in environment and launch. | |
If _policy is None, reset the old policy. | |
If _policy is not None, replace the old policy in the collector with the new passed in policy. | |
Arguments: | |
- policy (:obj:`Optional[List[namedtuple]]`): the api namedtuple of collect_mode policy | |
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ | |
env_manager(BaseEnvManager) | |
""" | |
if _env is not None: | |
self.reset_env(_env) | |
if _policy is not None: | |
self.reset_policy(_policy) | |
self._obs_pool = CachePool('obs', self._env_num, deepcopy=self._deepcopy_obs) | |
self._policy_output_pool = CachePool('policy_output', self._env_num) | |
# _traj_buffer is {env_id: {policy_id: TrajBuffer}}, is used to store traj_len pieces of transitions | |
self._traj_buffer = { | |
env_id: {policy_id: TrajBuffer(maxlen=self._traj_len) | |
for policy_id in range(2)} | |
for env_id in range(self._env_num) | |
} | |
self._env_info = {env_id: {'time': 0., 'step': 0} for env_id in range(self._env_num)} | |
self._episode_info = [] | |
self._total_envstep_count = 0 | |
self._total_episode_count = 0 | |
self._total_duration = 0 | |
self._last_train_iter = 0 | |
self._end_flag = False | |
def _reset_stat(self, env_id: int) -> None: | |
""" | |
Overview: | |
Reset the collector's state. Including reset the traj_buffer, obs_pool, policy_output_pool\ | |
and env_info. Reset these states according to env_id. You can refer to base_serial_collector\ | |
to get more messages. | |
Arguments: | |
- env_id (:obj:`int`): the id where we need to reset the collector's state | |
""" | |
for i in range(2): | |
self._traj_buffer[env_id][i].clear() | |
self._obs_pool.reset(env_id) | |
self._policy_output_pool.reset(env_id) | |
self._env_info[env_id] = {'time': 0., 'step': 0} | |
def envstep(self) -> int: | |
""" | |
Overview: | |
Print the total envstep count. | |
Return: | |
- envstep (:obj:`int`): the total envstep count | |
""" | |
return self._total_envstep_count | |
def close(self) -> None: | |
""" | |
Overview: | |
Close the collector. If end_flag is False, close the environment, flush the tb_logger\ | |
and close the tb_logger. | |
""" | |
if self._end_flag: | |
return | |
self._end_flag = True | |
self._env.close() | |
self._tb_logger.flush() | |
self._tb_logger.close() | |
def __del__(self) -> None: | |
""" | |
Overview: | |
Execute the close command and close the collector. __del__ is automatically called to \ | |
destroy the collector instance when the collector finishes its work | |
""" | |
self.close() | |
def collect(self, | |
n_episode: Optional[int] = None, | |
train_iter: int = 0, | |
policy_kwargs: Optional[dict] = None) -> Tuple[List[Any], List[Any]]: | |
""" | |
Overview: | |
Collect `n_episode` data with policy_kwargs, which is already trained `train_iter` iterations | |
Arguments: | |
- n_episode (:obj:`int`): the number of collecting data episode | |
- train_iter (:obj:`int`): the number of training iteration | |
- policy_kwargs (:obj:`dict`): the keyword args for policy forward | |
Returns: | |
- return_data (:obj:`Tuple[List, List]`): A tuple with training sample(data) and episode info, \ | |
the former is a list containing collected episodes if not get_train_sample, \ | |
otherwise, return train_samples split by unroll_len. | |
""" | |
if n_episode is None: | |
if self._default_n_episode is None: | |
raise RuntimeError("Please specify collect n_episode") | |
else: | |
n_episode = self._default_n_episode | |
assert n_episode >= self._env_num, "Please make sure n_episode >= env_num" | |
if policy_kwargs is None: | |
policy_kwargs = {} | |
collected_episode = 0 | |
return_data = [[] for _ in range(2)] | |
return_info = [[] for _ in range(2)] | |
ready_env_id = set() | |
remain_episode = n_episode | |
while True: | |
with self._timer: | |
# Get current env obs. | |
obs = self._env.ready_obs | |
new_available_env_id = set(obs.keys()).difference(ready_env_id) | |
ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode])) | |
remain_episode -= min(len(new_available_env_id), remain_episode) | |
obs = {env_id: obs[env_id] for env_id in ready_env_id} | |
# Policy forward. | |
self._obs_pool.update(obs) | |
if self._transform_obs: | |
obs = to_tensor(obs, dtype=torch.float32) | |
obs = dicts_to_lists(obs) | |
policy_output = [p.forward(obs[i], **policy_kwargs) for i, p in enumerate(self._policy)] | |
self._policy_output_pool.update(policy_output) | |
# Interact with env. | |
actions = {} | |
for env_id in ready_env_id: | |
actions[env_id] = [] | |
for output in policy_output: | |
actions[env_id].append(output[env_id]['action']) | |
actions = to_ndarray(actions) | |
# temporally for viz | |
probs0 = torch.softmax(torch.stack([o['logit'] for o in policy_output[0].values()], 0), 1).mean(0) | |
probs1 = torch.softmax(torch.stack([o['logit'] for o in policy_output[1].values()], 0), 1).mean(0) | |
timesteps = self._env.step(actions) | |
# TODO(nyz) this duration may be inaccurate in async env | |
interaction_duration = self._timer.value / len(timesteps) | |
# TODO(nyz) vectorize this for loop | |
for env_id, timestep in timesteps.items(): | |
self._env_info[env_id]['step'] += 1 | |
self._total_envstep_count += 1 | |
with self._timer: | |
for policy_id, policy in enumerate(self._policy): | |
policy_timestep_data = [d[policy_id] if not isinstance(d, bool) else d for d in timestep] | |
policy_timestep = type(timestep)(*policy_timestep_data) | |
transition = self._policy[policy_id].process_transition( | |
self._obs_pool[env_id][policy_id], self._policy_output_pool[env_id][policy_id], | |
policy_timestep | |
) | |
transition['collect_iter'] = train_iter | |
self._traj_buffer[env_id][policy_id].append(transition) | |
# prepare data | |
if timestep.done: | |
transitions = to_tensor_transitions(self._traj_buffer[env_id][policy_id]) | |
if self._cfg.get_train_sample: | |
train_sample = self._policy[policy_id].get_train_sample(transitions) | |
return_data[policy_id].extend(train_sample) | |
else: | |
return_data[policy_id].append(transitions) | |
self._traj_buffer[env_id][policy_id].clear() | |
self._env_info[env_id]['time'] += self._timer.value + interaction_duration | |
# If env is done, record episode info and reset | |
if timestep.done: | |
self._total_episode_count += 1 | |
info = { | |
'reward0': timestep.info[0]['eval_episode_return'], | |
'reward1': timestep.info[1]['eval_episode_return'], | |
'time': self._env_info[env_id]['time'], | |
'step': self._env_info[env_id]['step'], | |
'probs0': probs0, | |
'probs1': probs1, | |
} | |
collected_episode += 1 | |
self._episode_info.append(info) | |
for i, p in enumerate(self._policy): | |
p.reset([env_id]) | |
self._reset_stat(env_id) | |
ready_env_id.remove(env_id) | |
for policy_id in range(2): | |
return_info[policy_id].append(timestep.info[policy_id]) | |
if collected_episode >= n_episode: | |
break | |
# log | |
self._output_log(train_iter) | |
return return_data, return_info | |
def _output_log(self, train_iter: int) -> None: | |
""" | |
Overview: | |
Print the output log information. You can refer to Docs/Best Practice/How to understand\ | |
training generated folders/Serial mode/log/collector for more details. | |
Arguments: | |
- train_iter (:obj:`int`): the number of training iteration. | |
""" | |
if (train_iter - self._last_train_iter) >= self._collect_print_freq and len(self._episode_info) > 0: | |
self._last_train_iter = train_iter | |
episode_count = len(self._episode_info) | |
envstep_count = sum([d['step'] for d in self._episode_info]) | |
duration = sum([d['time'] for d in self._episode_info]) | |
episode_return0 = [d['reward0'] for d in self._episode_info] | |
episode_return1 = [d['reward1'] for d in self._episode_info] | |
probs0 = [d['probs0'] for d in self._episode_info] | |
probs1 = [d['probs1'] for d in self._episode_info] | |
self._total_duration += duration | |
info = { | |
'episode_count': episode_count, | |
'envstep_count': envstep_count, | |
'avg_envstep_per_episode': envstep_count / episode_count, | |
'avg_envstep_per_sec': envstep_count / duration, | |
'avg_episode_per_sec': episode_count / duration, | |
'collect_time': duration, | |
'reward0_mean': np.mean(episode_return0), | |
'reward0_std': np.std(episode_return0), | |
'reward0_max': np.max(episode_return0), | |
'reward0_min': np.min(episode_return0), | |
'reward1_mean': np.mean(episode_return1), | |
'reward1_std': np.std(episode_return1), | |
'reward1_max': np.max(episode_return1), | |
'reward1_min': np.min(episode_return1), | |
'total_envstep_count': self._total_envstep_count, | |
'total_episode_count': self._total_episode_count, | |
'total_duration': self._total_duration, | |
} | |
info.update( | |
{ | |
'probs0_select_action0': sum([p[0] for p in probs0]) / len(probs0), | |
'probs0_select_action1': sum([p[1] for p in probs0]) / len(probs0), | |
'probs1_select_action0': sum([p[0] for p in probs1]) / len(probs1), | |
'probs1_select_action1': sum([p[1] for p in probs1]) / len(probs1), | |
} | |
) | |
self._episode_info.clear() | |
self._logger.info("collect end:\n{}".format('\n'.join(['{}: {}'.format(k, v) for k, v in info.items()]))) | |
for k, v in info.items(): | |
self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter) | |
if k in ['total_envstep_count']: | |
continue | |
self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, self._total_envstep_count) | |