import gradio as gr from huggingface_hub import InferenceClient import os import json import base64 from PIL import Image import io ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Function to encode image to base64 def encode_image(image_path): if not image_path: print("No image path provided") return None try: print(f"Encoding image from path: {image_path}") # If it's already a PIL Image if isinstance(image_path, Image.Image): image = image_path else: # Try to open the image file image = Image.open(image_path) # Convert to RGB if image has an alpha channel (RGBA) if image.mode == 'RGBA': image = image.convert('RGB') # Encode to base64 buffered = io.BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") print("Image encoded successfully") return img_str except Exception as e: print(f"Error encoding image: {e}") return None def respond( message, image_files, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, frequency_penalty, seed, provider, custom_api_key, custom_model, model_search_term, selected_model ): print(f"Received message: {message}") print(f"Received {len(image_files) if image_files else 0} images") print(f"History: {history}") print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") print(f"Selected provider: {provider}") print(f"Custom API Key provided: {bool(custom_api_key.strip())}") print(f"Selected model (custom_model): {custom_model}") print(f"Model search term: {model_search_term}") print(f"Selected model from radio: {selected_model}") # Determine which token to use token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN if custom_api_key.strip() != "": print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication") else: print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication") # Initialize the Inference Client with the provider and appropriate token client = InferenceClient(token=token_to_use, provider=provider) print(f"Hugging Face Inference Client initialized with {provider} provider.") # Convert seed to None if -1 (meaning random) if seed == -1: seed = None # Prepare messages for the API user_content = [] # Add text if there is any if message and message.strip(): user_content.append({ "type": "text", "text": message }) # Add images if any if image_files and len(image_files) > 0: for file_path in image_files: if not file_path: continue try: print(f"Processing image file: {file_path}") # For direct file paths, no need to encode as base64 user_content.append({ "type": "image_url", "image_url": { "url": f"file://{file_path}" } }) except Exception as e: print(f"Error processing image file: {e}") # If empty content, set to text only if not user_content: user_content = "" # Prepare messages in the format expected by the API messages = [{"role": "system", "content": system_message}] print("Initial messages array constructed.") # Add conversation history to the context for val in history: user_msg = val[0] assistant_msg = val[1] # Process user message if user_msg: if isinstance(user_msg, dict) and "text" in user_msg: # This is a MultimodalTextbox message hist_text = user_msg.get("text", "") hist_files = user_msg.get("files", []) hist_content = [] if hist_text: hist_content.append({ "type": "text", "text": hist_text }) for hist_file in hist_files: if hist_file: hist_content.append({ "type": "image_url", "image_url": { "url": f"file://{hist_file}" } }) if hist_content: messages.append({"role": "user", "content": hist_content}) else: # Regular text message messages.append({"role": "user", "content": user_msg}) # Process assistant message if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) # Append the latest user message messages.append({"role": "user", "content": user_content}) print(f"Latest user message appended (content type: {type(user_content)})") # Determine which model to use, prioritizing custom_model if provided model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model print(f"Model selected for inference: {model_to_use}") # Start with an empty string to build the response as tokens stream in response = "" print(f"Sending request to {provider} provider.") # Prepare parameters for the chat completion request parameters = { "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "frequency_penalty": frequency_penalty, } if seed is not None: parameters["seed"] = seed # Use the InferenceClient for making the request try: # Create a generator for the streaming response stream = client.chat_completion( model=model_to_use, messages=messages, stream=True, **parameters ) print("Received tokens: ", end="", flush=True) # Process the streaming response for chunk in stream: if hasattr(chunk, 'choices') and len(chunk.choices) > 0: # Extract the content from the response if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'): token_text = chunk.choices[0].delta.content if token_text: print(token_text, end="", flush=True) response += token_text yield response print() except Exception as e: print(f"Error during inference: {e}") response += f"\nError: {str(e)}" yield response print("Completed response generation.") # Function to validate provider selection based on BYOK def validate_provider(api_key, provider): if not api_key.strip() and provider != "hf-inference": return gr.update(value="hf-inference") return gr.update(value=provider) # GRADIO UI with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: # Create the chatbot component chatbot = gr.Chatbot( height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel" ) print("Chatbot interface created.") # Multimodal textbox for messages (combines text and file uploads) msg = gr.MultimodalTextbox( placeholder="Type a message or upload images...", show_label=False, container=False, scale=12, file_types=["image"], file_count="multiple", sources=["upload"] ) # Note: We're removing the separate submit button since MultimodalTextbox has its own # Create accordion for settings with gr.Accordion("Settings", open=False): # System message system_message_box = gr.Textbox( value="You are a helpful AI assistant that can understand images and text.", placeholder="You are a helpful assistant.", label="System Prompt" ) # Generation parameters with gr.Row(): with gr.Column(): max_tokens_slider = gr.Slider( minimum=1, maximum=4096, value=512, step=1, label="Max tokens" ) temperature_slider = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ) top_p_slider = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P" ) with gr.Column(): frequency_penalty_slider = gr.Slider( minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty" ) seed_slider = gr.Slider( minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)" ) # Provider selection providers_list = [ "hf-inference", # Default Hugging Face Inference "cerebras", # Cerebras provider "together", # Together AI "sambanova", # SambaNova "novita", # Novita AI "cohere", # Cohere "fireworks-ai", # Fireworks AI "hyperbolic", # Hyperbolic "nebius", # Nebius ] provider_radio = gr.Radio( choices=providers_list, value="hf-inference", label="Inference Provider", info="[View all models here](https://huggingface.co/models?inference_provider=all&sort=trending)" ) # New BYOK textbox byok_textbox = gr.Textbox( value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.", placeholder="Enter your Hugging Face API token", type="password" # Hide the API key for security ) # Custom model box custom_model_box = gr.Textbox( value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", placeholder="meta-llama/Llama-3.3-70B-Instruct" ) # Model search model_search_box = gr.Textbox( label="Filter Models", placeholder="Search for a featured model...", lines=1 ) # Featured models list # Updated to include multimodal models models_list = [ # Multimodal models "meta-llama/Llama-3.3-70B-Vision", "Alibaba-NLP/NephilaV-16B-Chat", "mistralai/Mistral-Large-Vision-2407", "OpenGVLab/InternVL-Chat-V1-5", "microsoft/Phi-3.5-vision-instruct", "Qwen/Qwen2.5-VL-7B-Instruct", "liuhaotian/llava-v1.6-mistral-7b", # Standard text models "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.0-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct", "meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3", "mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B", "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct", ] featured_model_radio = gr.Radio( label="Select a model below", choices=models_list, value="meta-llama/Llama-3.3-70B-Vision", # Default to a multimodal model interactive=True ) gr.Markdown("[View all multimodal models](https://huggingface.co/models?pipeline_tag=image-to-text&sort=trending)") # Chat history state chat_history = gr.State([]) # Function to filter models def filter_models(search_term): print(f"Filtering models with search term: {search_term}") filtered = [m for m in models_list if search_term.lower() in m.lower()] print(f"Filtered models: {filtered}") return gr.update(choices=filtered) # Function to set custom model from radio def set_custom_model_from_radio(selected): print(f"Featured model selected: {selected}") return selected # Function for the chat interface def user(user_message, history): # Debug logging for troubleshooting print(f"User message received: {user_message}") # Skip if message is empty (no text and no files) if not user_message or (not user_message.get("text") and not user_message.get("files")): print("Empty message, skipping") return history # Extract data from the MultimodalTextbox text_content = user_message.get("text", "").strip() file_paths = user_message.get("files", []) print(f"Text content: {text_content}") print(f"Files: {file_paths}") # Process the message if file_paths and len(file_paths) > 0: # We have files - create a multimodal message file_path = file_paths[0] # For simplicity, use the first file print(f"Using file: {file_path}") # Add the message with both text and file as separate components history.append([user_message, None]) # Keep the original format for processing else: # Text-only message history.append([{"text": text_content, "files": []}, None]) return history # Define bot response function def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model): # Check if history is valid if not history or len(history) == 0: print("No history to process") return history # Extract the last user message user_message = history[-1][0] print(f"Processing user message: {user_message}") # Get text and files from the message if isinstance(user_message, dict) and "text" in user_message: text_content = user_message.get("text", "") image_files = user_message.get("files", []) else: text_content = "" image_files = [] # Process message through respond function history[-1][1] = "" for response in respond( text_content, image_files, history[:-1], system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model ): history[-1][1] = response yield history # Event handlers - only using the MultimodalTextbox's built-in submit functionality msg.submit( user, [msg, chatbot], [chatbot], queue=False ).then( bot, [chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider, frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box, model_search_box, featured_model_radio], [chatbot] ).then( lambda: {"text": "", "files": []}, # Clear inputs after submission None, [msg] ) # Connect the model filter to update the radio choices model_search_box.change( fn=filter_models, inputs=model_search_box, outputs=featured_model_radio ) print("Model search box change event linked.") # Connect the featured model radio to update the custom model box featured_model_radio.change( fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box ) print("Featured model radio button change event linked.") # Connect the BYOK textbox to validate provider selection byok_textbox.change( fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio ) print("BYOK textbox change event linked.") # Also validate provider when the radio changes to ensure consistency provider_radio.change( fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio ) print("Provider radio button change event linked.") print("Gradio interface initialized.") if __name__ == "__main__": print("Launching the demo application.") demo.launch(show_api=True)