Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,56 +2,12 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import json
|
5 |
-
import base64
|
6 |
-
from PIL import Image
|
7 |
-
import io
|
8 |
|
9 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
10 |
print("Access token loaded.")
|
11 |
|
12 |
-
def encode_image_to_base64(image):
|
13 |
-
"""Convert a PIL Image to a base64 string"""
|
14 |
-
buffered = io.BytesIO()
|
15 |
-
image.save(buffered, format="JPEG")
|
16 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
17 |
-
return img_str
|
18 |
-
|
19 |
-
def process_uploaded_images(images):
|
20 |
-
"""Process uploaded images and return image_url dicts for API submission"""
|
21 |
-
if not images:
|
22 |
-
return []
|
23 |
-
|
24 |
-
image_contents = []
|
25 |
-
for img in images:
|
26 |
-
if isinstance(img, str): # Path to an image
|
27 |
-
try:
|
28 |
-
image = Image.open(img)
|
29 |
-
base64_image = encode_image_to_base64(image)
|
30 |
-
image_contents.append({
|
31 |
-
"type": "image_url",
|
32 |
-
"image_url": {
|
33 |
-
"url": f"data:image/jpeg;base64,{base64_image}"
|
34 |
-
}
|
35 |
-
})
|
36 |
-
except Exception as e:
|
37 |
-
print(f"Error processing image {img}: {e}")
|
38 |
-
else: # Already a PIL Image
|
39 |
-
try:
|
40 |
-
base64_image = encode_image_to_base64(img)
|
41 |
-
image_contents.append({
|
42 |
-
"type": "image_url",
|
43 |
-
"image_url": {
|
44 |
-
"url": f"data:image/jpeg;base64,{base64_image}"
|
45 |
-
}
|
46 |
-
})
|
47 |
-
except Exception as e:
|
48 |
-
print(f"Error processing uploaded image: {e}")
|
49 |
-
|
50 |
-
return image_contents
|
51 |
-
|
52 |
def respond(
|
53 |
message,
|
54 |
-
images, # New parameter for uploaded images
|
55 |
history: list[tuple[str, str]],
|
56 |
system_message,
|
57 |
max_tokens,
|
@@ -60,19 +16,18 @@ def respond(
|
|
60 |
frequency_penalty,
|
61 |
seed,
|
62 |
provider,
|
63 |
-
custom_api_key,
|
64 |
custom_model,
|
65 |
model_search_term,
|
66 |
selected_model
|
67 |
):
|
68 |
print(f"Received message: {message}")
|
69 |
-
print(f"Received images: {len(images) if images else 0} image(s)")
|
70 |
print(f"History: {history}")
|
71 |
print(f"System message: {system_message}")
|
72 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
73 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
74 |
print(f"Selected provider: {provider}")
|
75 |
-
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
|
76 |
print(f"Selected model (custom_model): {custom_model}")
|
77 |
print(f"Model search term: {model_search_term}")
|
78 |
print(f"Selected model from radio: {selected_model}")
|
@@ -102,50 +57,17 @@ def respond(
|
|
102 |
for val in history:
|
103 |
user_part = val[0]
|
104 |
assistant_part = val[1]
|
105 |
-
|
106 |
-
# Process user messages (could be multimodal)
|
107 |
if user_part:
|
108 |
-
|
109 |
-
|
110 |
-
# Already in multimodal format, use as is
|
111 |
-
messages.append({"role": "user", "content": user_part})
|
112 |
-
print("Added multimodal user message from history")
|
113 |
-
else:
|
114 |
-
# Simple text message
|
115 |
-
messages.append({"role": "user", "content": user_part})
|
116 |
-
print(f"Added user message to context: {user_part}")
|
117 |
-
|
118 |
-
# Process assistant messages (always text)
|
119 |
if assistant_part:
|
120 |
messages.append({"role": "assistant", "content": assistant_part})
|
121 |
print(f"Added assistant message to context: {assistant_part}")
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
if message and message.strip():
|
128 |
-
current_message_content.append({
|
129 |
-
"type": "text",
|
130 |
-
"text": message
|
131 |
-
})
|
132 |
-
|
133 |
-
# Process and add image content if provided
|
134 |
-
if images:
|
135 |
-
image_contents = process_uploaded_images(images)
|
136 |
-
current_message_content.extend(image_contents)
|
137 |
-
|
138 |
-
# Format the final message based on content
|
139 |
-
if current_message_content:
|
140 |
-
if len(current_message_content) == 1 and "type" in current_message_content[0] and current_message_content[0]["type"] == "text":
|
141 |
-
# If only text, use simple string format for compatibility with all models
|
142 |
-
messages.append({"role": "user", "content": current_message_content[0]["text"]})
|
143 |
-
print(f"Added simple text user message: {current_message_content[0]['text']}")
|
144 |
-
else:
|
145 |
-
# If multimodal content, use the array format
|
146 |
-
messages.append({"role": "user", "content": current_message_content})
|
147 |
-
print(f"Added multimodal user message with {len(current_message_content)} parts")
|
148 |
-
|
149 |
# Determine which model to use, prioritizing custom_model if provided
|
150 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
151 |
print(f"Model selected for inference: {model_to_use}")
|
@@ -168,11 +90,12 @@ def respond(
|
|
168 |
# Use the InferenceClient for making the request
|
169 |
try:
|
170 |
# Create a generator for the streaming response
|
|
|
171 |
stream = client.chat_completion(
|
172 |
model=model_to_use,
|
173 |
messages=messages,
|
174 |
stream=True,
|
175 |
-
**parameters
|
176 |
)
|
177 |
|
178 |
# Print a starting message for token streaming
|
@@ -206,39 +129,94 @@ def validate_provider(api_key, provider):
|
|
206 |
return gr.update(value="hf-inference")
|
207 |
return gr.update(value=provider)
|
208 |
|
209 |
-
#
|
210 |
-
def filter_models(search_term):
|
211 |
-
print(f"Filtering models with search term: {search_term}")
|
212 |
-
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
213 |
-
print(f"Filtered models: {filtered}")
|
214 |
-
return gr.update(choices=filtered)
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
219 |
-
We will update the Custom Model text box with that selection automatically.
|
220 |
-
"""
|
221 |
-
print(f"Featured model selected: {selected}")
|
222 |
-
return selected
|
223 |
|
224 |
-
#
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
"
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
]
|
240 |
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
models_list = [
|
243 |
"meta-llama/Llama-3.3-70B-Instruct",
|
244 |
"meta-llama/Llama-3.1-70B-Instruct",
|
@@ -268,337 +246,59 @@ models_list = [
|
|
268 |
"HuggingFaceTB/SmolLM2-360M-Instruct",
|
269 |
"tiiuae/falcon-7b-instruct",
|
270 |
"01-ai/Yi-1.5-34B-Chat",
|
271 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
-
|
274 |
-
def format_history_with_images(history):
|
275 |
"""
|
276 |
-
|
|
|
277 |
"""
|
278 |
-
|
279 |
-
|
280 |
-
for user_msg, assistant_msg in history:
|
281 |
-
# Process user message
|
282 |
-
if isinstance(user_msg, list):
|
283 |
-
# Multimodal message
|
284 |
-
formatted_user_msg = []
|
285 |
-
for item in user_msg:
|
286 |
-
if item.get("type") == "text":
|
287 |
-
formatted_user_msg.append(item["text"])
|
288 |
-
elif item.get("type") == "image_url":
|
289 |
-
# Extract the base64 image data
|
290 |
-
img_url = item.get("image_url", {}).get("url", "")
|
291 |
-
if img_url.startswith("data:image/"):
|
292 |
-
formatted_user_msg.append((img_url, "image"))
|
293 |
-
|
294 |
-
formatted_history.append((formatted_user_msg, assistant_msg))
|
295 |
-
else:
|
296 |
-
# Regular text message
|
297 |
-
formatted_history.append((user_msg, assistant_msg))
|
298 |
-
|
299 |
-
return formatted_history
|
300 |
-
|
301 |
-
# GRADIO UI
|
302 |
|
303 |
-
# Create
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
)
|
310 |
-
print("
|
311 |
-
|
312 |
-
# Create a virtual column layout for the message input area
|
313 |
-
with gr.Blocks() as msg_input:
|
314 |
-
with gr.Row():
|
315 |
-
with gr.Column(scale=4):
|
316 |
-
msg = gr.Textbox(
|
317 |
-
placeholder="Enter text here or upload an image",
|
318 |
-
show_label=False,
|
319 |
-
container=False,
|
320 |
-
lines=3
|
321 |
-
)
|
322 |
-
with gr.Column(scale=1, min_width=50):
|
323 |
-
img_upload = gr.Image(
|
324 |
-
type="pil",
|
325 |
-
label="Upload Image",
|
326 |
-
show_label=False,
|
327 |
-
icon="🖼️",
|
328 |
-
container=True,
|
329 |
-
height=50,
|
330 |
-
width=50
|
331 |
-
)
|
332 |
-
|
333 |
-
# Basic input components
|
334 |
-
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
|
335 |
|
336 |
-
with
|
337 |
-
with gr.Row():
|
338 |
-
with gr.Column():
|
339 |
-
max_tokens_slider = gr.Slider(
|
340 |
-
minimum=1,
|
341 |
-
maximum=4096,
|
342 |
-
value=512,
|
343 |
-
step=1,
|
344 |
-
label="Max tokens"
|
345 |
-
)
|
346 |
-
|
347 |
-
temperature_slider = gr.Slider(
|
348 |
-
minimum=0.1,
|
349 |
-
maximum=4.0,
|
350 |
-
value=0.7,
|
351 |
-
step=0.1,
|
352 |
-
label="Temperature"
|
353 |
-
)
|
354 |
-
|
355 |
-
with gr.Column():
|
356 |
-
top_p_slider = gr.Slider(
|
357 |
-
minimum=0.1,
|
358 |
-
maximum=1.0,
|
359 |
-
value=0.95,
|
360 |
-
step=0.05,
|
361 |
-
label="Top-P"
|
362 |
-
)
|
363 |
-
|
364 |
-
frequency_penalty_slider = gr.Slider(
|
365 |
-
minimum=-2.0,
|
366 |
-
maximum=2.0,
|
367 |
-
value=0.0,
|
368 |
-
step=0.1,
|
369 |
-
label="Frequency Penalty"
|
370 |
-
)
|
371 |
-
|
372 |
-
with gr.Row():
|
373 |
-
seed_slider = gr.Slider(
|
374 |
-
minimum=-1,
|
375 |
-
maximum=65535,
|
376 |
-
value=-1,
|
377 |
-
step=1,
|
378 |
-
label="Seed (-1 for random)"
|
379 |
-
)
|
380 |
-
|
381 |
-
with gr.Accordion("Model Selection", open=False):
|
382 |
-
with gr.Row():
|
383 |
-
with gr.Column():
|
384 |
-
# Provider selection
|
385 |
-
providers_list = [
|
386 |
-
"hf-inference", # Default Hugging Face Inference
|
387 |
-
"cerebras", # Cerebras provider
|
388 |
-
"together", # Together AI
|
389 |
-
"sambanova", # SambaNova
|
390 |
-
"novita", # Novita AI
|
391 |
-
"cohere", # Cohere
|
392 |
-
"fireworks-ai", # Fireworks AI
|
393 |
-
"hyperbolic", # Hyperbolic
|
394 |
-
"nebius", # Nebius
|
395 |
-
]
|
396 |
-
|
397 |
-
provider_radio = gr.Radio(
|
398 |
-
choices=providers_list,
|
399 |
-
value="hf-inference",
|
400 |
-
label="Inference Provider",
|
401 |
-
info="[View all models here](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending)"
|
402 |
-
)
|
403 |
-
|
404 |
-
# New BYOK textbox - Added for the new feature
|
405 |
-
byok_textbox = gr.Textbox(
|
406 |
-
value="",
|
407 |
-
label="BYOK (Bring Your Own Key)",
|
408 |
-
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
409 |
-
placeholder="Enter your Hugging Face API token",
|
410 |
-
type="password" # Hide the API key for security
|
411 |
-
)
|
412 |
-
|
413 |
-
with gr.Column():
|
414 |
-
# Model selection components
|
415 |
-
model_search_box = gr.Textbox(
|
416 |
-
label="Filter Models",
|
417 |
-
placeholder="Search for a featured model...",
|
418 |
-
lines=1
|
419 |
-
)
|
420 |
-
|
421 |
-
featured_model_radio = gr.Radio(
|
422 |
-
label="Select a model below",
|
423 |
-
choices=models_list,
|
424 |
-
value="meta-llama/Llama-3.3-70B-Vision-Instruct", # Default to a multimodal model
|
425 |
-
interactive=True
|
426 |
-
)
|
427 |
-
|
428 |
-
# Custom model box
|
429 |
-
custom_model_box = gr.Textbox(
|
430 |
-
value="",
|
431 |
-
label="Custom Model",
|
432 |
-
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
433 |
-
placeholder="meta-llama/Llama-3.3-70B-Vision-Instruct"
|
434 |
-
)
|
435 |
-
|
436 |
-
gr.Markdown("[See all multimodal models](https://huggingface.co/models?pipeline_tag=visual-question-answering&sort=trending)")
|
437 |
-
|
438 |
-
# Main Gradio interface
|
439 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
440 |
-
gr.Markdown("# 🤖 Serverless-MultiModal-Hub")
|
441 |
-
|
442 |
-
with gr.Row():
|
443 |
-
with gr.Column(scale=3):
|
444 |
-
# Display the chatbot
|
445 |
-
chatbot_interface = chatbot
|
446 |
-
|
447 |
-
# Custom submit function to handle multimodal inputs
|
448 |
-
def submit_message(message, images, history):
|
449 |
-
history = history or []
|
450 |
-
|
451 |
-
# Format the message content based on whether there are images
|
452 |
-
if images:
|
453 |
-
# Create a multimodal message format for history display
|
454 |
-
user_msg = []
|
455 |
-
if message:
|
456 |
-
user_msg.append({"type": "text", "text": message})
|
457 |
-
|
458 |
-
# Add each image as an image_url item
|
459 |
-
for img in images:
|
460 |
-
if img is not None:
|
461 |
-
img_base64 = encode_image_to_base64(img)
|
462 |
-
img_url = f"data:image/jpeg;base64,{img_base64}"
|
463 |
-
user_msg.append({
|
464 |
-
"type": "image_url",
|
465 |
-
"image_url": {"url": img_url}
|
466 |
-
})
|
467 |
-
|
468 |
-
# Add to history
|
469 |
-
history.append([user_msg, None])
|
470 |
-
else:
|
471 |
-
# Text-only message
|
472 |
-
if message:
|
473 |
-
history.append([message, None])
|
474 |
-
else:
|
475 |
-
# No content to submit
|
476 |
-
return history
|
477 |
-
|
478 |
-
return history
|
479 |
-
|
480 |
-
# Create message input
|
481 |
-
with gr.Group():
|
482 |
-
with gr.Row():
|
483 |
-
with gr.Column(scale=4):
|
484 |
-
text_input = gr.Textbox(
|
485 |
-
placeholder="Enter text here",
|
486 |
-
show_label=False,
|
487 |
-
container=False,
|
488 |
-
lines=3
|
489 |
-
)
|
490 |
-
with gr.Column(scale=1, min_width=50):
|
491 |
-
image_input = gr.Image(
|
492 |
-
type="pil",
|
493 |
-
label="Upload Image",
|
494 |
-
show_label=False,
|
495 |
-
sources=["upload", "clipboard"],
|
496 |
-
tool="editor",
|
497 |
-
height=100,
|
498 |
-
visible=True
|
499 |
-
)
|
500 |
-
|
501 |
-
# Submit button
|
502 |
-
submit_btn = gr.Button("Submit", variant="primary")
|
503 |
-
|
504 |
-
# Clear button
|
505 |
-
clear_btn = gr.Button("Clear")
|
506 |
-
|
507 |
-
with gr.Column(scale=1):
|
508 |
-
# Put settings here
|
509 |
-
system_message_box = gr.Textbox(
|
510 |
-
value="",
|
511 |
-
placeholder="You are a helpful assistant that can understand images.",
|
512 |
-
label="System Prompt",
|
513 |
-
lines=2
|
514 |
-
)
|
515 |
-
|
516 |
-
with gr.Accordion("Model Selection", open=False):
|
517 |
-
# Provider selection
|
518 |
-
provider_radio = gr.Radio(
|
519 |
-
choices=providers_list,
|
520 |
-
value="hf-inference",
|
521 |
-
label="Inference Provider"
|
522 |
-
)
|
523 |
-
|
524 |
-
# BYOK textbox
|
525 |
-
byok_textbox = gr.Textbox(
|
526 |
-
value="",
|
527 |
-
label="API Key",
|
528 |
-
placeholder="Enter provider API key",
|
529 |
-
type="password"
|
530 |
-
)
|
531 |
-
|
532 |
-
# Model selection components
|
533 |
-
model_search_box = gr.Textbox(
|
534 |
-
label="Filter Models",
|
535 |
-
placeholder="Search models...",
|
536 |
-
lines=1
|
537 |
-
)
|
538 |
-
|
539 |
-
featured_model_radio = gr.Radio(
|
540 |
-
label="Models",
|
541 |
-
choices=models_list,
|
542 |
-
value="meta-llama/Llama-3.3-70B-Vision-Instruct",
|
543 |
-
interactive=True
|
544 |
-
)
|
545 |
-
|
546 |
-
custom_model_box = gr.Textbox(
|
547 |
-
value="",
|
548 |
-
label="Custom Model",
|
549 |
-
placeholder="Enter model path"
|
550 |
-
)
|
551 |
-
|
552 |
-
gr.Markdown("[View all multimodal models](https://huggingface.co/models?pipeline_tag=visual-question-answering&sort=trending)")
|
553 |
-
|
554 |
-
with gr.Accordion("Model Settings", open=False):
|
555 |
-
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
556 |
-
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
557 |
-
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
|
558 |
-
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
559 |
-
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
560 |
-
|
561 |
-
# Connect the submit button
|
562 |
-
submit_btn.click(
|
563 |
-
fn=submit_message,
|
564 |
-
inputs=[text_input, image_input, chatbot_interface],
|
565 |
-
outputs=[chatbot_interface],
|
566 |
-
queue=False
|
567 |
-
).then(
|
568 |
-
fn=respond,
|
569 |
-
inputs=[
|
570 |
-
text_input,
|
571 |
-
image_input,
|
572 |
-
chatbot_interface,
|
573 |
-
system_message_box,
|
574 |
-
max_tokens_slider,
|
575 |
-
temperature_slider,
|
576 |
-
top_p_slider,
|
577 |
-
frequency_penalty_slider,
|
578 |
-
seed_slider,
|
579 |
-
provider_radio,
|
580 |
-
byok_textbox,
|
581 |
-
custom_model_box,
|
582 |
-
model_search_box,
|
583 |
-
featured_model_radio
|
584 |
-
],
|
585 |
-
outputs=[chatbot_interface],
|
586 |
-
queue=True
|
587 |
-
).then(
|
588 |
-
fn=lambda: (None, None), # Clear inputs after submission
|
589 |
-
inputs=None,
|
590 |
-
outputs=[text_input, image_input]
|
591 |
-
)
|
592 |
-
|
593 |
-
# Clear button functionality
|
594 |
-
clear_btn.click(lambda: None, None, chatbot_interface, queue=False)
|
595 |
-
|
596 |
# Connect the model filter to update the radio choices
|
597 |
model_search_box.change(
|
598 |
fn=filter_models,
|
599 |
inputs=model_search_box,
|
600 |
outputs=featured_model_radio
|
601 |
)
|
|
|
602 |
|
603 |
# Connect the featured model radio to update the custom model box
|
604 |
featured_model_radio.change(
|
@@ -606,6 +306,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
606 |
inputs=featured_model_radio,
|
607 |
outputs=custom_model_box
|
608 |
)
|
|
|
609 |
|
610 |
# Connect the BYOK textbox to validate provider selection
|
611 |
byok_textbox.change(
|
@@ -613,6 +314,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
613 |
inputs=[byok_textbox, provider_radio],
|
614 |
outputs=provider_radio
|
615 |
)
|
|
|
616 |
|
617 |
# Also validate provider when the radio changes to ensure consistency
|
618 |
provider_radio.change(
|
@@ -620,7 +322,10 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
620 |
inputs=[byok_textbox, provider_radio],
|
621 |
outputs=provider_radio
|
622 |
)
|
|
|
|
|
|
|
623 |
|
624 |
if __name__ == "__main__":
|
625 |
-
print("Launching
|
626 |
demo.launch(show_api=True)
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import json
|
|
|
|
|
|
|
5 |
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
7 |
print("Access token loaded.")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def respond(
|
10 |
message,
|
|
|
11 |
history: list[tuple[str, str]],
|
12 |
system_message,
|
13 |
max_tokens,
|
|
|
16 |
frequency_penalty,
|
17 |
seed,
|
18 |
provider,
|
19 |
+
custom_api_key, # New parameter for BYOK
|
20 |
custom_model,
|
21 |
model_search_term,
|
22 |
selected_model
|
23 |
):
|
24 |
print(f"Received message: {message}")
|
|
|
25 |
print(f"History: {history}")
|
26 |
print(f"System message: {system_message}")
|
27 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
28 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
29 |
print(f"Selected provider: {provider}")
|
30 |
+
print(f"Custom API Key provided: {bool(custom_api_key.strip())}") # Log whether a custom key was provided without printing the key
|
31 |
print(f"Selected model (custom_model): {custom_model}")
|
32 |
print(f"Model search term: {model_search_term}")
|
33 |
print(f"Selected model from radio: {selected_model}")
|
|
|
57 |
for val in history:
|
58 |
user_part = val[0]
|
59 |
assistant_part = val[1]
|
|
|
|
|
60 |
if user_part:
|
61 |
+
messages.append({"role": "user", "content": user_part})
|
62 |
+
print(f"Added user message to context: {user_part}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if assistant_part:
|
64 |
messages.append({"role": "assistant", "content": assistant_part})
|
65 |
print(f"Added assistant message to context: {assistant_part}")
|
66 |
|
67 |
+
# Append the latest user message
|
68 |
+
messages.append({"role": "user", "content": message})
|
69 |
+
print("Latest user message appended.")
|
70 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# Determine which model to use, prioritizing custom_model if provided
|
72 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
73 |
print(f"Model selected for inference: {model_to_use}")
|
|
|
90 |
# Use the InferenceClient for making the request
|
91 |
try:
|
92 |
# Create a generator for the streaming response
|
93 |
+
# The provider is already set when initializing the client
|
94 |
stream = client.chat_completion(
|
95 |
model=model_to_use,
|
96 |
messages=messages,
|
97 |
stream=True,
|
98 |
+
**parameters # Pass all other parameters
|
99 |
)
|
100 |
|
101 |
# Print a starting message for token streaming
|
|
|
129 |
return gr.update(value="hf-inference")
|
130 |
return gr.update(value=provider)
|
131 |
|
132 |
+
# GRADIO UI
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
|
135 |
+
print("Chatbot interface created.")
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
# Basic input components
|
138 |
+
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
|
139 |
+
|
140 |
+
max_tokens_slider = gr.Slider(
|
141 |
+
minimum=1,
|
142 |
+
maximum=4096,
|
143 |
+
value=512,
|
144 |
+
step=1,
|
145 |
+
label="Max tokens"
|
146 |
+
)
|
147 |
+
temperature_slider = gr.Slider(
|
148 |
+
minimum=0.1,
|
149 |
+
maximum=4.0,
|
150 |
+
value=0.7,
|
151 |
+
step=0.1,
|
152 |
+
label="Temperature"
|
153 |
+
)
|
154 |
+
top_p_slider = gr.Slider(
|
155 |
+
minimum=0.1,
|
156 |
+
maximum=1.0,
|
157 |
+
value=0.95,
|
158 |
+
step=0.05,
|
159 |
+
label="Top-P"
|
160 |
+
)
|
161 |
+
frequency_penalty_slider = gr.Slider(
|
162 |
+
minimum=-2.0,
|
163 |
+
maximum=2.0,
|
164 |
+
value=0.0,
|
165 |
+
step=0.1,
|
166 |
+
label="Frequency Penalty"
|
167 |
+
)
|
168 |
+
seed_slider = gr.Slider(
|
169 |
+
minimum=-1,
|
170 |
+
maximum=65535,
|
171 |
+
value=-1,
|
172 |
+
step=1,
|
173 |
+
label="Seed (-1 for random)"
|
174 |
+
)
|
175 |
+
|
176 |
+
# Provider selection
|
177 |
+
providers_list = [
|
178 |
+
"hf-inference", # Default Hugging Face Inference
|
179 |
+
"cerebras", # Cerebras provider
|
180 |
+
"together", # Together AI
|
181 |
+
"sambanova", # SambaNova
|
182 |
+
"novita", # Novita AI
|
183 |
+
"cohere", # Cohere
|
184 |
+
"fireworks-ai", # Fireworks AI
|
185 |
+
"hyperbolic", # Hyperbolic
|
186 |
+
"nebius", # Nebius
|
187 |
]
|
188 |
|
189 |
+
provider_radio = gr.Radio(
|
190 |
+
choices=providers_list,
|
191 |
+
value="hf-inference",
|
192 |
+
label="Inference Provider",
|
193 |
+
info="[View all models here](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending)"
|
194 |
+
)
|
195 |
+
|
196 |
+
# New BYOK textbox - Added for the new feature
|
197 |
+
byok_textbox = gr.Textbox(
|
198 |
+
value="",
|
199 |
+
label="BYOK (Bring Your Own Key)",
|
200 |
+
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
201 |
+
placeholder="Enter your Hugging Face API token",
|
202 |
+
type="password" # Hide the API key for security
|
203 |
+
)
|
204 |
+
|
205 |
+
# Custom model box
|
206 |
+
custom_model_box = gr.Textbox(
|
207 |
+
value="",
|
208 |
+
label="Custom Model",
|
209 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
210 |
+
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
211 |
+
)
|
212 |
+
|
213 |
+
# Model selection components
|
214 |
+
model_search_box = gr.Textbox(
|
215 |
+
label="Filter Models",
|
216 |
+
placeholder="Search for a featured model...",
|
217 |
+
lines=1
|
218 |
+
)
|
219 |
+
|
220 |
models_list = [
|
221 |
"meta-llama/Llama-3.3-70B-Instruct",
|
222 |
"meta-llama/Llama-3.1-70B-Instruct",
|
|
|
246 |
"HuggingFaceTB/SmolLM2-360M-Instruct",
|
247 |
"tiiuae/falcon-7b-instruct",
|
248 |
"01-ai/Yi-1.5-34B-Chat",
|
249 |
+
]
|
250 |
+
|
251 |
+
featured_model_radio = gr.Radio(
|
252 |
+
label="Select a model below",
|
253 |
+
choices=models_list,
|
254 |
+
value="meta-llama/Llama-3.3-70B-Instruct",
|
255 |
+
interactive=True
|
256 |
+
)
|
257 |
+
|
258 |
+
def filter_models(search_term):
|
259 |
+
print(f"Filtering models with search term: {search_term}")
|
260 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
261 |
+
print(f"Filtered models: {filtered}")
|
262 |
+
return gr.update(choices=filtered)
|
263 |
|
264 |
+
def set_custom_model_from_radio(selected):
|
|
|
265 |
"""
|
266 |
+
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
267 |
+
We will update the Custom Model text box with that selection automatically.
|
268 |
"""
|
269 |
+
print(f"Featured model selected: {selected}")
|
270 |
+
return selected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
+
# Create the Gradio interface
|
273 |
+
demo = gr.ChatInterface(
|
274 |
+
fn=respond,
|
275 |
+
additional_inputs=[
|
276 |
+
system_message_box,
|
277 |
+
max_tokens_slider,
|
278 |
+
temperature_slider,
|
279 |
+
top_p_slider,
|
280 |
+
frequency_penalty_slider,
|
281 |
+
seed_slider,
|
282 |
+
provider_radio, # Provider selection
|
283 |
+
byok_textbox, # New BYOK textbox
|
284 |
+
custom_model_box, # Custom Model
|
285 |
+
model_search_box, # Model search box
|
286 |
+
featured_model_radio # Featured model radio
|
287 |
+
],
|
288 |
+
fill_height=True,
|
289 |
+
chatbot=chatbot,
|
290 |
+
theme="Nymbo/Nymbo_Theme",
|
291 |
)
|
292 |
+
print("ChatInterface object created.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
+
with demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
# Connect the model filter to update the radio choices
|
296 |
model_search_box.change(
|
297 |
fn=filter_models,
|
298 |
inputs=model_search_box,
|
299 |
outputs=featured_model_radio
|
300 |
)
|
301 |
+
print("Model search box change event linked.")
|
302 |
|
303 |
# Connect the featured model radio to update the custom model box
|
304 |
featured_model_radio.change(
|
|
|
306 |
inputs=featured_model_radio,
|
307 |
outputs=custom_model_box
|
308 |
)
|
309 |
+
print("Featured model radio button change event linked.")
|
310 |
|
311 |
# Connect the BYOK textbox to validate provider selection
|
312 |
byok_textbox.change(
|
|
|
314 |
inputs=[byok_textbox, provider_radio],
|
315 |
outputs=provider_radio
|
316 |
)
|
317 |
+
print("BYOK textbox change event linked.")
|
318 |
|
319 |
# Also validate provider when the radio changes to ensure consistency
|
320 |
provider_radio.change(
|
|
|
322 |
inputs=[byok_textbox, provider_radio],
|
323 |
outputs=provider_radio
|
324 |
)
|
325 |
+
print("Provider radio button change event linked.")
|
326 |
+
|
327 |
+
print("Gradio interface initialized.")
|
328 |
|
329 |
if __name__ == "__main__":
|
330 |
+
print("Launching the demo application.")
|
331 |
demo.launch(show_api=True)
|