Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,8 +15,8 @@ def respond(
|
|
15 |
top_p,
|
16 |
frequency_penalty,
|
17 |
seed,
|
18 |
-
custom_model
|
19 |
-
provider
|
20 |
model_search_term,
|
21 |
selected_model
|
22 |
):
|
@@ -25,8 +25,8 @@ def respond(
|
|
25 |
print(f"System message: {system_message}")
|
26 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
27 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
28 |
-
print(f"Selected
|
29 |
-
print(f"Selected
|
30 |
print(f"Model search term: {model_search_term}")
|
31 |
print(f"Selected model from radio: {selected_model}")
|
32 |
|
@@ -149,14 +149,6 @@ seed_slider = gr.Slider(
|
|
149 |
label="Seed (-1 for random)"
|
150 |
)
|
151 |
|
152 |
-
# Custom model box
|
153 |
-
custom_model_box = gr.Textbox(
|
154 |
-
value="",
|
155 |
-
label="Custom Model",
|
156 |
-
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
157 |
-
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
158 |
-
)
|
159 |
-
|
160 |
# Provider selection
|
161 |
providers_list = [
|
162 |
"hf-inference", # Default Hugging Face Inference
|
@@ -178,6 +170,14 @@ provider_radio = gr.Radio(
|
|
178 |
info="Select which inference provider to use. Uses your Hugging Face PRO credits."
|
179 |
)
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
# Model selection components
|
182 |
model_search_box = gr.Textbox(
|
183 |
label="Filter Models",
|
@@ -279,4 +279,4 @@ print("Gradio interface initialized.")
|
|
279 |
|
280 |
if __name__ == "__main__":
|
281 |
print("Launching the demo application.")
|
282 |
-
demo.launch(show_api=True)
|
|
|
15 |
top_p,
|
16 |
frequency_penalty,
|
17 |
seed,
|
18 |
+
provider, # Moved before custom_model
|
19 |
+
custom_model, # Moved after provider
|
20 |
model_search_term,
|
21 |
selected_model
|
22 |
):
|
|
|
25 |
print(f"System message: {system_message}")
|
26 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
27 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
28 |
+
print(f"Selected provider: {provider}") # Updated order
|
29 |
+
print(f"Selected model (custom_model): {custom_model}") # Updated order
|
30 |
print(f"Model search term: {model_search_term}")
|
31 |
print(f"Selected model from radio: {selected_model}")
|
32 |
|
|
|
149 |
label="Seed (-1 for random)"
|
150 |
)
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
# Provider selection
|
153 |
providers_list = [
|
154 |
"hf-inference", # Default Hugging Face Inference
|
|
|
170 |
info="Select which inference provider to use. Uses your Hugging Face PRO credits."
|
171 |
)
|
172 |
|
173 |
+
# Custom model box
|
174 |
+
custom_model_box = gr.Textbox(
|
175 |
+
value="",
|
176 |
+
label="Custom Model",
|
177 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
178 |
+
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
179 |
+
)
|
180 |
+
|
181 |
# Model selection components
|
182 |
model_search_box = gr.Textbox(
|
183 |
label="Filter Models",
|
|
|
279 |
|
280 |
if __name__ == "__main__":
|
281 |
print("Launching the demo application.")
|
282 |
+
demo.launch(show_api=True) # Fixed typo: demo. Launch -> demo.launch
|