Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Load the Hugging Face access token from environment variables | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client pointing to the Hugging Face Inference API | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
# Define the main function that handles chat responses | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, # Input from the Custom Model textbox | |
featured_model # Input from the Featured Model radio buttons <<< NEW INPUT | |
): | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Custom model input: '{custom_model}'") | |
print(f"Selected featured model: {featured_model}") # Log the featured model selection | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Start constructing the message list for the API call with the system message | |
messages = [{"role": "system", "content": system_message}] | |
print("Initial messages array constructed.") | |
# Add the conversation history to the messages list | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Add the latest user message to the list | |
messages.append({"role": "user", "content": message}) | |
print("Latest user message appended.") | |
# <<< MODEL SELECTION LOGIC UPDATED >>> | |
# Determine the model to use: Prioritize the custom model box if it's filled, | |
# otherwise use the selected featured model. | |
custom_model_stripped = custom_model.strip() # Remove leading/trailing whitespace | |
if custom_model_stripped != "": | |
model_to_use = custom_model_stripped # Use custom model if provided | |
print(f"Using custom model: {model_to_use}") | |
else: | |
model_to_use = featured_model # Use the selected featured model | |
print(f"Using selected featured model: {model_to_use}") | |
# Initialize an empty string to accumulate the response tokens | |
response = "" | |
print("Sending request to Hugging Face Inference API.") | |
# Stream the response from the API | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, # Use the determined model | |
max_tokens=max_tokens, # Set maximum tokens for the response | |
stream=True, # Enable streaming responses | |
temperature=temperature, # Set sampling temperature | |
top_p=top_p, # Set nucleus sampling probability | |
frequency_penalty=frequency_penalty, # Set frequency penalty | |
seed=seed, # Set random seed (if provided) | |
messages=messages, # Pass the constructed message history | |
): | |
# Get the text content from the current chunk | |
token_text = message_chunk.choices[0].delta.content | |
# Append the token text to the response string (if it's not None) | |
if token_text: | |
print(f"Received token: {token_text}") | |
response += token_text | |
yield response # Yield the partial response back to Gradio for live updates | |
print("Completed response generation.") | |
# --- GRADIO UI --- | |
# Create the main chatbot display area | |
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel") | |
print("Chatbot interface created.") | |
# Create the System Prompt input box | |
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt") | |
# Create sliders for model parameters | |
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens") | |
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") | |
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") | |
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") | |
# Create the Custom Model input box | |
custom_model_box = gr.Textbox( | |
value="", # Default to empty | |
label="Custom Model", | |
info="(Optional) Provide a custom Hugging Face model path. Overrides the featured model selection below.", | |
placeholder="e.g., username/my-custom-model" # Updated placeholder | |
) | |
# Define the list of featured models | |
models_list = [ | |
"meta-llama/Llama-3.3-70B-Instruct", # Default selected model | |
"meta-llama/Llama-3.1-70B-Instruct", | |
"meta-llama/Llama-3.0-70B-Instruct", | |
"meta-llama/Llama-3.2-3B-Instruct", | |
"meta-llama/Llama-3.2-1B-Instruct", | |
"meta-llama/Llama-3.1-8B-Instruct", | |
"NousResearch/Hermes-3-Llama-3.1-8B", | |
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
"mistralai/Mistral-Nemo-Instruct-2407", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"mistralai/Mistral-7B-Instruct-v0.2", | |
"Qwen/Qwen3-235B-A22B", | |
"Qwen/Qwen3-32B", | |
"Qwen/Qwen2.5-72B-Instruct", | |
"Qwen/Qwen2.5-3B-Instruct", | |
"Qwen/Qwen2.5-0.5B-Instruct", | |
"Qwen/QwQ-32B", | |
"Qwen/Qwen2.5-Coder-32B-Instruct", | |
"microsoft/Phi-3.5-mini-instruct", | |
"microsoft/Phi-3-mini-128k-instruct", | |
"microsoft/Phi-3-mini-4k-instruct", | |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", | |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", | |
"HuggingFaceH4/zephyr-7b-beta", | |
"HuggingFaceTB/SmolLM2-360M-Instruct", | |
"tiiuae/falcon-7b-instruct", | |
"01-ai/Yi-1.5-34B-Chat", | |
] | |
print("Models list initialized.") | |
# Create the radio button selector for featured models | |
featured_model_radio = gr.Radio( | |
label="Select a Featured Model", # Changed label slightly | |
choices=models_list, | |
value="meta-llama/Llama-3.3-70B-Instruct", # Set the default selection | |
interactive=True | |
) | |
print("Featured models radio button created.") | |
# --- Create the main Chat Interface --- | |
# <<< `additional_inputs` UPDATED >>> | |
demo = gr.ChatInterface( | |
fn=respond, # The function to call when a message is sent | |
additional_inputs=[ # List of input components passed to the 'respond' function | |
system_message_box, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
frequency_penalty_slider, | |
seed_slider, | |
custom_model_box, | |
featured_model_radio # Pass the radio button selection <<< ADDED | |
], | |
fill_height=True, # Make the interface fill the available height | |
chatbot=chatbot, # Use the predefined chatbot component | |
theme="Nymbo/Nymbo_Theme", # Apply a theme | |
) | |
print("ChatInterface object created.") | |
# --- Add Model Selection Controls within the Interface --- | |
with demo: # Use the ChatInterface as a context manager to add elements | |
with gr.Accordion("Model Selection & Parameters", open=False): # Group controls in an accordion | |
# --- Featured Model Selection --- | |
gr.Markdown("### Featured Models") # Section title | |
model_search_box = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search featured models...", | |
lines=1 | |
) | |
print("Model search box created.") | |
# Place the radio buttons here | |
# No need to define `featured_model_radio` again, just use the variable defined above | |
demo.load(lambda: featured_model_radio, outputs=featured_model_radio) # Ensure it appears in the layout | |
print("Featured model radio added to layout.") | |
# --- Custom Model Input --- | |
gr.Markdown("### Custom Model") # Section title | |
# No need to define `custom_model_box` again, just use the variable defined above | |
demo.load(lambda: custom_model_box, outputs=custom_model_box) # Ensure it appears in the layout | |
print("Custom model box added to layout.") | |
# --- Parameters --- | |
gr.Markdown("### Parameters") # Section title | |
# Add sliders to the layout | |
demo.load(lambda: max_tokens_slider, outputs=max_tokens_slider) | |
demo.load(lambda: temperature_slider, outputs=temperature_slider) | |
demo.load(lambda: top_p_slider, outputs=top_p_slider) | |
demo.load(lambda: frequency_penalty_slider, outputs=frequency_penalty_slider) | |
demo.load(lambda: seed_slider, outputs=seed_slider) | |
print("Parameter sliders added to layout.") | |
# --- Event Listeners --- | |
# Function to filter the radio button choices based on search input | |
def filter_models(search_term): | |
print(f"Filtering models with search term: {search_term}") | |
# List comprehension to find models matching the search term (case-insensitive) | |
filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
print(f"Filtered models: {filtered}") | |
# Update the 'choices' property of the radio button component | |
return gr.update(choices=filtered) | |
# Link the search box's 'change' event to the filter function | |
model_search_box.change( | |
fn=filter_models, # Function to call | |
inputs=model_search_box, # Input component triggering the event | |
outputs=featured_model_radio # Output component to update | |
) | |
print("Model search box change event linked.") | |
print("Gradio interface layout defined.") | |
# --- Launch the Application --- | |
if __name__ == "__main__": | |
print("Launching the Gradio demo application.") | |
# Launch the Gradio app with API endpoint enabled | |
demo.launch(show_api=True) |