File size: 9,018 Bytes
038f313
1cee504
c5a20a4
2d6eaa5
038f313
db00df1
2d6eaa5
c6bdd15
038f313
27c8b8d
 
 
038f313
 
 
3a64d68
98674ca
5b8ad4f
d92e5cd
 
 
038f313
0ef95ea
2d6eaa5
0ef95ea
 
 
5b8ad4f
2d6eaa5
d92e5cd
 
f7c4208
ba0614b
 
 
 
 
901bafe
0ef95ea
 
038f313
1cee504
c5a20a4
2d6eaa5
901bafe
5b8ad4f
27c8b8d
2d6eaa5
 
 
 
 
 
 
 
27c8b8d
5b8ad4f
 
2d6eaa5
4df41b9
45b016b
7a4f867
d92e5cd
5b8ad4f
0ef95ea
2d6eaa5
0ef95ea
1cee504
 
 
 
3b18f78
1cee504
 
 
 
2d6eaa5
1cee504
 
 
ba0614b
1cee504
 
ba0614b
1cee504
5b8ad4f
 
1cee504
 
 
2d6eaa5
1cee504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef95ea
901bafe
2d6eaa5
f7c4208
2d6eaa5
0ef95ea
a8fc89d
d92e5cd
2d6eaa5
 
 
 
 
 
 
d92e5cd
2d6eaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d92e5cd
1cee504
 
 
 
 
 
ba79a28
 
 
 
 
 
 
 
1cee504
 
44fa8df
1cee504
2d6eaa5
5b8ad4f
1cee504
901bafe
a8fc89d
191e45f
 
 
 
 
 
 
 
d92e5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6eaa5
 
7a4f867
 
2d6eaa5
 
7a4f867
b0cbd1c
d92e5cd
a8fc89d
5b8ad4f
 
30153c5
 
 
 
 
 
44fa8df
191e45f
d92e5cd
 
a8fc89d
5b8ad4f
 
 
901bafe
0ef95ea
901bafe
5b8ad4f
d92e5cd
 
 
 
 
 
 
5b8ad4f
7a4f867
 
 
 
 
 
 
a8fc89d
2d6eaa5
769901b
77298b9
5b8ad4f
2d6eaa5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    custom_model,
    provider,  # Provider selection
    model_search_term,  # For filtering models
    selected_model  # From radio button selection
):
    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected model (custom_model): {custom_model}")
    print(f"Selected provider: {provider}")
    print(f"Model search term: {model_search_term}")
    print(f"Selected model from radio: {selected_model}")

    # Initialize the Inference Client with the provider
    # Provider is specified during initialization, not in the method call
    client = InferenceClient(token=ACCESS_TOKEN, provider=provider)
    print(f"Hugging Face Inference Client initialized with {provider} provider.")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Prepare messages in the format expected by the API
    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})
    print("Latest user message appended.")

    # Determine which model to use
    # Only use custom_model if it's not empty and was manually entered by user
    model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print(f"Sending request to {provider} provider.")

    # Prepare parameters for the chat completion request
    parameters = {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
    }
    
    if seed is not None:
        parameters["seed"] = seed

    # Use the InferenceClient for making the request
    try:
        # Create a generator for the streaming response
        # The provider is already set when initializing the client
        stream = client.chat_completion(
            model=model_to_use,
            messages=messages,
            stream=True,
            **parameters  # Pass all other parameters
        )
        
        # Process the streaming response
        for chunk in stream:
            if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
                # Extract the content from the response
                if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
                    token_text = chunk.choices[0].delta.content
                    if token_text:
                        print(f"Received token: {token_text}")
                        response += token_text
                        yield response
    except Exception as e:
        print(f"Error during inference: {e}")
        response += f"\nError: {str(e)}"
        yield response

    print("Completed response generation.")

# GRADIO UI

chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
print("Chatbot interface created.")

# Basic input components
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")

max_tokens_slider = gr.Slider(
    minimum=1,
    maximum=4096,
    value=512,
    step=1,
    label="Max tokens"
)
temperature_slider = gr.Slider(
    minimum=0.1,
    maximum=4.0,
    value=0.7,
    step=0.1,
    label="Temperature"
)
top_p_slider = gr.Slider(
    minimum=0.1,
    maximum=1.0,
    value=0.95,
    step=0.05,
    label="Top-P"
)
frequency_penalty_slider = gr.Slider(
    minimum=-2.0,
    maximum=2.0,
    value=0.0,
    step=0.1,
    label="Frequency Penalty"
)
seed_slider = gr.Slider(
    minimum=-1,
    maximum=65535,
    value=-1,
    step=1,
    label="Seed (-1 for random)"
)

# Provider selection
providers_list = [
    "hf-inference",  # Default Hugging Face Inference
    "cerebras",      # Cerebras provider
    "together",      # Together AI
    "sambanova",     # SambaNova
    "replicate",     # Replicate
    "fal-ai",        # Fal.ai
    "novita",        # Novita AI
    "black-forest-labs", # Black Forest Labs
    "cohere",        # Cohere
    "fireworks-ai",  # Fireworks AI
    "hyperbolic",    # Hyperbolic
    "nebius",        # Nebius
    "openai"         # OpenAI compatible endpoints
]

provider_radio = gr.Radio(
    choices=providers_list,
    value="hf-inference",
    label="Inference Provider",
    info="Select which inference provider to use. Uses your Hugging Face PRO credits."
)

# Custom model box
custom_model_box = gr.Textbox(
    value="",
    label="Custom Model",
    info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
    placeholder="meta-llama/Llama-3.3-70B-Instruct"
)

# Model selection components
model_search_box = gr.Textbox(
    label="Filter Models",
    placeholder="Search for a featured model...",
    lines=1
)

models_list = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "meta-llama/Llama-3.1-70B-Instruct",
    "meta-llama/Llama-3.0-70B-Instruct",
    "meta-llama/Llama-3.2-3B-Instruct",
    "meta-llama/Llama-3.2-1B-Instruct",
    "meta-llama/Llama-3.1-8B-Instruct",
    "NousResearch/Hermes-3-Llama-3.1-8B",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "Qwen/Qwen3-235B-A22B",
    "Qwen/Qwen3-32B",
    "Qwen/Qwen2.5-72B-Instruct",
    "Qwen/Qwen2.5-3B-Instruct",
    "Qwen/Qwen2.5-0.5B-Instruct",
    "Qwen/QwQ-32B",
    "Qwen/Qwen2.5-Coder-32B-Instruct",
    "microsoft/Phi-3.5-mini-instruct",
    "microsoft/Phi-3-mini-128k-instruct",
    "microsoft/Phi-3-mini-4k-instruct",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
    "HuggingFaceH4/zephyr-7b-beta",
    "HuggingFaceTB/SmolLM2-360M-Instruct",
    "tiiuae/falcon-7b-instruct",
    "01-ai/Yi-1.5-34B-Chat",
]

featured_model_radio = gr.Radio(
    label="Select a model below",
    choices=models_list,
    value="meta-llama/Llama-3.3-70B-Instruct",
    interactive=True
)

def filter_models(search_term):
    print(f"Filtering models with search term: {search_term}")
    filtered = [m for m in models_list if search_term.lower() in m.lower()]
    print(f"Filtered models: {filtered}")
    return gr.update(choices=filtered)

def set_custom_model_from_radio(selected):
    """
    Function is disabled - now just returns empty string to prevent auto-filling
    Custom Model field when selecting from the radio buttons
    """
    print(f"Featured model selected: {selected}")
    return ""  # Return empty string instead of the selected model

# Create the Gradio interface
demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        system_message_box,
        max_tokens_slider,
        temperature_slider,
        top_p_slider,
        frequency_penalty_slider,
        seed_slider,
        provider_radio,     # Provider selection
        custom_model_box,
        model_search_box,    # Model search box
        featured_model_radio # Featured model radio
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)
print("ChatInterface object created.")

with demo:
    # Connect the model filter to update the radio choices
    model_search_box.change(
        fn=filter_models,
        inputs=model_search_box,
        outputs=featured_model_radio
    )
    print("Model search box change event linked.")

    # Connect the featured model radio to update the custom model box
    featured_model_radio.change(
        fn=set_custom_model_from_radio,
        inputs=featured_model_radio,
        outputs=custom_model_box
    )
    print("Featured model radio button change event linked.")

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch(show_api=True)