Spaces:
Running
Running
File size: 9,018 Bytes
038f313 1cee504 c5a20a4 2d6eaa5 038f313 db00df1 2d6eaa5 c6bdd15 038f313 27c8b8d 038f313 3a64d68 98674ca 5b8ad4f d92e5cd 038f313 0ef95ea 2d6eaa5 0ef95ea 5b8ad4f 2d6eaa5 d92e5cd f7c4208 ba0614b 901bafe 0ef95ea 038f313 1cee504 c5a20a4 2d6eaa5 901bafe 5b8ad4f 27c8b8d 2d6eaa5 27c8b8d 5b8ad4f 2d6eaa5 4df41b9 45b016b 7a4f867 d92e5cd 5b8ad4f 0ef95ea 2d6eaa5 0ef95ea 1cee504 3b18f78 1cee504 2d6eaa5 1cee504 ba0614b 1cee504 ba0614b 1cee504 5b8ad4f 1cee504 2d6eaa5 1cee504 0ef95ea 901bafe 2d6eaa5 f7c4208 2d6eaa5 0ef95ea a8fc89d d92e5cd 2d6eaa5 d92e5cd 2d6eaa5 d92e5cd 1cee504 ba79a28 1cee504 44fa8df 1cee504 2d6eaa5 5b8ad4f 1cee504 901bafe a8fc89d 191e45f d92e5cd 2d6eaa5 7a4f867 2d6eaa5 7a4f867 b0cbd1c d92e5cd a8fc89d 5b8ad4f 30153c5 44fa8df 191e45f d92e5cd a8fc89d 5b8ad4f 901bafe 0ef95ea 901bafe 5b8ad4f d92e5cd 5b8ad4f 7a4f867 a8fc89d 2d6eaa5 769901b 77298b9 5b8ad4f 2d6eaa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
provider, # Provider selection
model_search_term, # For filtering models
selected_model # From radio button selection
):
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Selected provider: {provider}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
# Initialize the Inference Client with the provider
# Provider is specified during initialization, not in the method call
client = InferenceClient(token=ACCESS_TOKEN, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Prepare messages in the format expected by the API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
print("Latest user message appended.")
# Determine which model to use
# Only use custom_model if it's not empty and was manually entered by user
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print(f"Sending request to {provider} provider.")
# Prepare parameters for the chat completion request
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
# Use the InferenceClient for making the request
try:
# Create a generator for the streaming response
# The provider is already set when initializing the client
stream = client.chat_completion(
model=model_to_use,
messages=messages,
stream=True,
**parameters # Pass all other parameters
)
# Process the streaming response
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
# Extract the content from the response
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
print(f"Received token: {token_text}")
response += token_text
yield response
except Exception as e:
print(f"Error during inference: {e}")
response += f"\nError: {str(e)}"
yield response
print("Completed response generation.")
# GRADIO UI
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
print("Chatbot interface created.")
# Basic input components
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Provider selection
providers_list = [
"hf-inference", # Default Hugging Face Inference
"cerebras", # Cerebras provider
"together", # Together AI
"sambanova", # SambaNova
"replicate", # Replicate
"fal-ai", # Fal.ai
"novita", # Novita AI
"black-forest-labs", # Black Forest Labs
"cohere", # Cohere
"fireworks-ai", # Fireworks AI
"hyperbolic", # Hyperbolic
"nebius", # Nebius
"openai" # OpenAI compatible endpoints
]
provider_radio = gr.Radio(
choices=providers_list,
value="hf-inference",
label="Inference Provider",
info="Select which inference provider to use. Uses your Hugging Face PRO credits."
)
# Custom model box
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# Model selection components
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2",
"Qwen/Qwen3-235B-A22B",
"Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct",
"microsoft/Phi-3-mini-4k-instruct",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"HuggingFaceH4/zephyr-7b-beta",
"HuggingFaceTB/SmolLM2-360M-Instruct",
"tiiuae/falcon-7b-instruct",
"01-ai/Yi-1.5-34B-Chat",
]
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
def set_custom_model_from_radio(selected):
"""
Function is disabled - now just returns empty string to prevent auto-filling
Custom Model field when selecting from the radio buttons
"""
print(f"Featured model selected: {selected}")
return "" # Return empty string instead of the selected model
# Create the Gradio interface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
provider_radio, # Provider selection
custom_model_box,
model_search_box, # Model search box
featured_model_radio # Featured model radio
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
print("ChatInterface object created.")
with demo:
# Connect the model filter to update the radio choices
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
print("Model search box change event linked.")
# Connect the featured model radio to update the custom model box
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
print("Featured model radio button change event linked.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=True) |