|
import streamlit as st |
|
from paddleocr import PaddleOCR |
|
from PIL import ImageDraw, ImageFont,ImageEnhance |
|
import torch |
|
from transformers import AutoProcessor,LayoutLMv3ForTokenClassification |
|
import numpy as np |
|
import time |
|
|
|
model_Hugging_path = "Noureddinesa/Output_LayoutLMv3_v7" |
|
|
|
def Paddle(): |
|
ocr = PaddleOCR(use_angle_cls=False,lang='fr',rec=False) |
|
return ocr |
|
|
|
|
|
|
|
def Labels(): |
|
labels = ['InvNum', 'InvDate', 'Fourni', 'TTC', 'TVA', 'TT', 'Autre'] |
|
id2label = {v: k for v, k in enumerate(labels)} |
|
label2id = {k: v for v, k in enumerate(labels)} |
|
return id2label, label2id |
|
|
|
|
|
def processbbox(BBOX, width, height): |
|
bbox = [] |
|
bbox.append(BBOX[0][0]) |
|
bbox.append(BBOX[0][1]) |
|
bbox.append(BBOX[2][0]) |
|
bbox.append(BBOX[2][1]) |
|
|
|
bbox[0]= 1000*bbox[0]/width |
|
bbox[1]= 1000*bbox[1]/height |
|
bbox[2]= 1000*bbox[2]/width |
|
bbox[3]= 1000*bbox[3]/height |
|
for i in range(4): |
|
bbox[i] = int(bbox[i]) |
|
return bbox |
|
|
|
|
|
def Preprocess(image): |
|
ocr = Paddle() |
|
image_array = np.array(image) |
|
width, height = image.size |
|
results = ocr.ocr(image_array, cls=False,rec = True) |
|
results = results[0] |
|
test_dict = {'image': image ,'tokens':[], "bboxes":[]} |
|
for item in results : |
|
bbox = processbbox(item[0], width, height) |
|
test_dict['tokens'].append(item[1][0]) |
|
test_dict['bboxes'].append(bbox) |
|
|
|
print(test_dict['bboxes']) |
|
print(test_dict['tokens']) |
|
return test_dict |
|
|
|
|
|
|
|
def Encode(image): |
|
example = Preprocess(image) |
|
image = example["image"] |
|
words = example["tokens"] |
|
boxes = example["bboxes"] |
|
processor = AutoProcessor.from_pretrained(model_Hugging_path, apply_ocr=False) |
|
encoding = processor(image, words, boxes=boxes,return_offsets_mapping=True,truncation=True, max_length=512, padding="max_length", return_tensors="pt") |
|
offset_mapping = encoding.pop('offset_mapping') |
|
return encoding, offset_mapping,words |
|
|
|
|
|
def unnormalize_box(bbox, width, height): |
|
return [ |
|
width * (bbox[0] / 1000), |
|
height * (bbox[1] / 1000), |
|
width * (bbox[2] / 1000), |
|
height * (bbox[3] / 1000), |
|
] |
|
|
|
def drop_null_bbox(dictionary): |
|
keys_to_drop = [] |
|
for key, (_, _, bbox_values) in dictionary.items(): |
|
if all(value == 0.0 for value in bbox_values): |
|
keys_to_drop.append(key) |
|
for key in keys_to_drop: |
|
del dictionary[key] |
|
|
|
def get_word(bboxes,image): |
|
ocr = Paddle() |
|
x_min, y_min, x_max, y_max = bboxes |
|
roi = image.crop((x_min, y_min, x_max, y_max)) |
|
roi_np = np.array(roi) |
|
result = ocr.ocr(roi_np, cls=False,det = False,rec = True) |
|
if result != [None]: |
|
return result[0][0][0] |
|
else : |
|
return "" |
|
|
|
|
|
def get_Finale_results(offset_mapping,id2label,image,prediction_scores,predictions,token_boxes): |
|
width, height = image.size |
|
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 |
|
|
|
true_predictions_with_scores = [(idx,id2label[pred], score[pred],unnormalize_box(box, width, height)) for idx, (pred, score,box) in enumerate(zip(predictions, prediction_scores,token_boxes)) if not is_subword[idx]] |
|
Final_prediction = [pred for pred in true_predictions_with_scores if pred[1] != "Autre"] |
|
|
|
Final_results = {} |
|
|
|
for index, prediction, score, bbox in Final_prediction: |
|
if prediction not in Final_results or score > Final_results[prediction][1]: |
|
Final_results[prediction] = (index, score,bbox) |
|
drop_null_bbox(Final_results) |
|
|
|
for final in Final_results: |
|
Kalma = get_word(Final_results[final][2],image) |
|
New_tuple = (Kalma,Final_results[final][1],Final_results[final][2]) |
|
Final_results[final] = New_tuple |
|
|
|
return Final_results |
|
|
|
def Run_model(image): |
|
encoding,offset_mapping,_ = Encode(image) |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
model = LayoutLMv3ForTokenClassification.from_pretrained(model_Hugging_path) |
|
model.to(device) |
|
|
|
outputs = model(**encoding) |
|
|
|
prediction_scores = outputs.logits.softmax(-1).squeeze().tolist() |
|
predictions = outputs.logits.argmax(-1).squeeze().tolist() |
|
token_boxes = encoding.bbox.squeeze().tolist() |
|
id2label, _ = Labels() |
|
Finale_results=get_Finale_results(offset_mapping,id2label,image,prediction_scores,predictions,token_boxes) |
|
return Finale_results |
|
|
|
|
|
|
|
def Get_Json(Finale_results): |
|
Results = {} |
|
for prd in Finale_results: |
|
if prd in ['InvNum','Fourni', 'InvDate','TT','TTC','TVA']: |
|
Results[prd] = Finale_results[prd][0] |
|
key_mapping = {'InvNum':'Numéro de facture','Fourni':'Fournisseur', 'InvDate':'Date Facture','TT':'Total HT','TTC':'Total TTC','TVA':'TVA'} |
|
Results = {key_mapping.get(key, key): value for key, value in Results.items()} |
|
return Results |
|
|
|
|
|
|
|
def Draw(image): |
|
start_time = time.time() |
|
|
|
image = enhance_image(image,1.3,1.7) |
|
Finale_results = Run_model(image) |
|
draw = ImageDraw.Draw(image) |
|
label2color = { |
|
'InvNum': 'blue', |
|
'InvDate': 'green', |
|
'Fourni': 'orange', |
|
'TTC':'purple', |
|
'TVA': 'magenta', |
|
'TT': 'red', |
|
'Autre': 'black' |
|
} |
|
|
|
|
|
rectangle_thickness = 4 |
|
label_x_offset = 20 |
|
label_y_offset = -30 |
|
|
|
custom_font_size = 25 |
|
|
|
|
|
font_path = "arial.ttf" |
|
custom_font = ImageFont.truetype(font_path, custom_font_size) |
|
|
|
for result in Finale_results: |
|
predicted_label = result |
|
box = Finale_results[result][2] |
|
color = label2color[result] |
|
draw.rectangle(box, outline=color, width=rectangle_thickness) |
|
|
|
|
|
draw.rectangle((box[0], box[1]+ label_y_offset,box[2],box[3]+ label_y_offset), fill=color) |
|
draw.text((box[0] + label_x_offset, box[1] + label_y_offset), text=predicted_label, fill='white', font=custom_font) |
|
|
|
Results = Get_Json(Finale_results) |
|
end_time = time.time() |
|
execution_time = end_time - start_time |
|
|
|
return image,Results,execution_time |
|
|
|
|
|
|
|
|
|
|
|
def Update(Results): |
|
New_results = {} |
|
|
|
if "Fournisseur" in Results.keys(): |
|
text_fourni = st.sidebar.text_input("Fournisseur", value=Results["Fournisseur"]) |
|
New_results["Fournisseur"] = text_fourni |
|
else : |
|
text_fourni = st.sidebar.text_input("Fournisseur", value= "") |
|
New_results["Fournisseur"] = text_fourni |
|
|
|
if "Date Facture" in Results.keys(): |
|
text_InvDate = st.sidebar.text_input("Date Facture", value=Results["Date Facture"]) |
|
New_results["Date Facture"] = text_InvDate |
|
else : |
|
text_InvDate = st.sidebar.text_input("Date Facture", value= "") |
|
New_results["Date Facture"] = text_InvDate |
|
|
|
if "Numéro de facture" in Results.keys(): |
|
text_InvNum = st.sidebar.text_input("Numéro de facture", value=Results["Numéro de facture"]) |
|
New_results["Numéro de facture"] = text_InvNum |
|
else : |
|
text_InvNum = st.sidebar.text_input("Numéro de facture", value= "") |
|
New_results["Numéro de facture"] = text_InvNum |
|
|
|
if "Total HT" in Results.keys(): |
|
text_TT = st.sidebar.text_input("Total HT", value=Results["Total HT"]) |
|
New_results["Total HT"] = text_TT |
|
else : |
|
text_TT = st.sidebar.text_input("Total HT", value= "") |
|
New_results["Total HT"] = text_TT |
|
|
|
if "TVA" in Results.keys(): |
|
text_TVA = st.sidebar.text_input("TVA", value=Results["TVA"]) |
|
New_results["TVA"] = text_TVA |
|
else : |
|
text_TVA = st.sidebar.text_input("TVA", value= "") |
|
New_results["TVA"] = text_TVA |
|
|
|
if "Total TTC" in Results.keys(): |
|
text_TTC = st.sidebar.text_input("Total TTC", value=Results["Total TTC"]) |
|
New_results["Total TTC"] = text_TTC |
|
else : |
|
text_TTC = st.sidebar.text_input("Total TTC", value= "") |
|
New_results["Total TTC"] = text_TTC |
|
|
|
return New_results |
|
|
|
|
|
|
|
def Change_Image(image1,image2): |
|
|
|
if 'current_image' not in st.session_state: |
|
st.session_state.current_image = 'image1' |
|
|
|
|
|
if st.sidebar.button('Switcher'): |
|
if st.session_state.current_image == 'image1': |
|
st.session_state.current_image = 'image2' |
|
else: |
|
st.session_state.current_image = 'image1' |
|
|
|
if st.session_state.current_image == 'image1': |
|
st.image(image1, caption='Output', use_column_width=True) |
|
else: |
|
st.image(image2, caption='Image initiale', use_column_width=True) |
|
|
|
|
|
|
|
def enhance_image(image,brightness_factor, contrast_factor): |
|
enhancer = ImageEnhance.Brightness(image) |
|
brightened_image = enhancer.enhance(brightness_factor) |
|
enhancer = ImageEnhance.Contrast(brightened_image) |
|
enhanced_image = enhancer.enhance(contrast_factor) |
|
return enhanced_image |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|