import gradio as gr import os from huggingface_hub import InferenceClient from huggingface_hub import hf_hub_download import chatglm_cpp def list_files_tree(directory, indent=""): items = os.listdir(directory) for i, item in enumerate(items): prefix = "└── " if i == len(items) - 1 else "├── " print(indent + prefix + item) item_path = os.path.join(directory, item) if os.path.isdir(item_path): next_indent = indent + (" " if i == len(items) - 1 else "│ ") list_files_tree(item_path, next_indent) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") repo_id = "None1145/ChatGLM3-6B-Theresa-GGML" filename = "ChatGLM3-6B-Theresa-GGML-Q4_0.bin" hf_hub_download(repo_id=repo_id, filename=filename, local_dir=f"./Models/{repo_id}") model = f"./Models/{repo_id}/{filename}" pipeline = chatglm_cpp.Pipeline(model, max_length=max_length) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): generation_kwargs = dict( max_length=max_length, max_context_length=max_tokens, do_sample=temperature > 0, top_k=0, top_p=top_p, temperature=temperature, repetition_penalty=1.0, stream=True, ) messages = [chatglm_cpp.ChatMessage(role="system", content=system_message)] for val in history: if val[0]: messages.append(chatglm_cpp.ChatMessage(role="user", content=val[0])) if val[1]: messages.append(chatglm_cpp.ChatMessage(role="assistant", content=val[0])) messages.append(chatglm_cpp.ChatMessage(role="user", content=message)) response = "" for chunk in pipeline.chat(messages, **generation_kwargs) response += chunk.content chunks.append(chunk) yield response messages.append(chatglm_cpp.ChatMessage(role="assistant", content=response)) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()