File size: 9,579 Bytes
5aec14b
aa6bf8a
5aec14b
 
 
15ec37f
aaf8cf2
4bb7d6f
e82969b
15ec37f
aaf8cf2
 
 
e82969b
 
 
 
 
15ec37f
e82969b
15ec37f
 
aa6bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e82969b
aa6bf8a
 
 
 
 
 
 
 
 
 
 
 
 
15ec37f
aa6bf8a
15ec37f
 
 
 
 
 
 
 
 
 
aa6bf8a
 
 
15ec37f
aa6bf8a
aaf8cf2
5aec14b
c37ed45
5aec14b
 
 
15ec37f
aaf8cf2
5aec14b
 
c37ed45
15ec37f
5aec14b
c37ed45
 
5aec14b
 
aa6bf8a
c37ed45
15ec37f
aa6bf8a
c37ed45
 
5aec14b
be39fa4
 
 
5aec14b
 
 
 
be39fa4
 
 
 
 
4bb7d6f
c37ed45
be39fa4
 
 
c37ed45
be39fa4
 
aa6bf8a
c37ed45
4bb7d6f
c37ed45
4bb7d6f
c37ed45
4bb7d6f
c37ed45
 
 
5aec14b
be39fa4
 
5aec14b
 
c37ed45
 
be39fa4
 
 
 
15ec37f
 
5aec14b
c37ed45
5aec14b
aa6bf8a
15ec37f
5aec14b
15ec37f
 
aa6bf8a
5aec14b
aa6bf8a
 
5aec14b
aaf8cf2
15ec37f
 
aaf8cf2
 
aa6bf8a
15ec37f
5aec14b
 
 
aa6bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aec14b
 
 
 
aa6bf8a
5aec14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa6bf8a
5aec14b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# utils/oneclick.py
from typing import Tuple, Optional, Dict
from .meldrx import MeldRxAPI
from .responseparser import PatientDataExtractor
from .pdfutils import PDFGenerator
from .verifier import DischargeVerifier  # Import the verifier
import logging
import json
from huggingface_hub import InferenceClient
import os

logger = logging.getLogger(__name__)

HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("HF_TOKEN environment variable not set.")
client = InferenceClient(api_key=HF_TOKEN)
MODEL_NAME = "meta-llama/Llama-3.3-70B-Instruct"
verifier = DischargeVerifier()  # Initialize the verifier

def generate_ai_discharge_summary(patient_dict: Dict[str, str], client) -> Tuple[Optional[str], Optional[str]]:
    """Generate a discharge summary using AI and verify it for hallucinations."""
    try:
        formatted_summary = format_discharge_summary(patient_dict)
        
        logger.info("Generating AI discharge summary with patient info: %s", formatted_summary)

        messages = [
            {
                "role": "assistant",
                "content": (
                    "You are a senior medical practitioner tasked with creating discharge summaries. "
                    "Generate a complete discharge summary based on the provided patient information."
                )
            },
            {"role": "user", "content": formatted_summary}
        ]

        stream = client.chat.completions.create(
            model=MODEL_NAME,
            messages=messages,
            temperature=0.4,
            max_tokens=3584,
            top_p=0.7,
            stream=True
        )

        discharge_summary = ""
        for chunk in stream:
            content = chunk.choices[0].delta.content
            if content:
                discharge_summary += content

        discharge_summary = discharge_summary.strip()
        logger.info("AI discharge summary generated successfully")

        # Verify the summary for hallucinations
        question = "Provide a complete discharge summary based on the patient information."
        verified_summary = verifier.verify_discharge_summary(
            context=formatted_summary,
            question=question,
            answer=discharge_summary
        )
        
        return discharge_summary, verified_summary

    except Exception as e:
        logger.error(f"Error generating AI discharge summary: {str(e)}", exc_info=True)
        return None, None

def generate_discharge_paper_one_click(
    api: MeldRxAPI,
    client,
    patient_id: str = "",
    first_name: str = "",
    last_name: str = ""
) -> Tuple[Optional[str], str, Optional[str], Optional[str], Optional[str]]:
    try:
        patients_data = api.get_patients()
        if not patients_data or "entry" not in patients_data:
            logger.error("No patient data received from MeldRx API")
            return None, "Failed to fetch patient data from MeldRx API", None, None, None

        logger.debug(f"Raw patient data from API: {patients_data}")
        
        extractor = PatientDataExtractor(patients_data, "json")
        
        if not extractor.patients:
            logger.error("No patients found in the parsed data")
            return None, "No patients found in the data", None, None, None

        logger.info(f"Found {len(extractor.patients)} patients in the data")
        
        matching_patients = []
        all_patient_ids = []
        all_patient_names = []
        
        for i in range(len(extractor.patients)):
            extractor.set_patient_by_index(i)
            patient_data = extractor.get_patient_dict()
            
            patient_id_from_data = str(patient_data.get('id', '')).strip().lower()
            first_name_from_data = str(patient_data.get('first_name', '')).strip().lower()
            last_name_from_data = str(patient_data.get('last_name', '')).strip().lower()
            
            all_patient_ids.append(patient_id_from_data)
            all_patient_names.append(f"{first_name_from_data} {last_name_from_data}".strip())
            
            patient_id_input = str(patient_id).strip().lower()
            first_name_input = str(first_name).strip().lower()
            last_name_input = str(last_name).strip().lower()
            
            logger.debug(f"Patient {i}: ID={patient_id_from_data}, Name={first_name_from_data} {last_name_from_data}")
            logger.debug(f"Comparing - Input: ID={patient_id_input}, First={first_name_input}, Last={last_name_input}")
            
            matches = True
            if patient_id_input and patient_id_from_data and patient_id_input != patient_id_from_data:
                matches = False
            if first_name_input and first_name_input != first_name_from_data:
                matches = False
            if last_name_input and last_name_input != last_name_from_data:
                matches = False
                
            if matches:
                matching_patients.append(patient_data)
                logger.info(f"Found matching patient: ID={patient_id_from_data}, "
                           f"Name={first_name_from_data} {last_name_from_data}")

        if not matching_patients:
            search_criteria = f"ID: {patient_id or 'N/A'}, First: {first_name or 'N/A'}, Last: {last_name or 'N/A'}"
            logger.warning(f"No patients matched criteria: {search_criteria}")
            logger.info(f"Available patient IDs: {all_patient_ids}")
            logger.info(f"Available patient names: {all_patient_names}")
            return None, (f"No patients found matching criteria: {search_criteria}\n"
                         f"Available IDs: {', '.join(all_patient_ids)}\n"
                         f"Available Names: {', '.join(all_patient_names)}"), None, None, None
        
        patient_data = matching_patients[0]
        logger.info(f"Selected patient data: {patient_data}")
        
        basic_summary = format_discharge_summary(patient_data)
        ai_summary, verified_summary = generate_ai_discharge_summary(patient_data, client)
        
        if not ai_summary or not verified_summary:
            return None, "Failed to generate or verify AI summary", basic_summary, None, None
            
        pdf_gen = PDFGenerator()
        filename = f"discharge_{patient_data.get('id', 'unknown')}_{patient_data.get('last_name', 'patient')}.pdf"
        pdf_path = pdf_gen.generate_pdf_from_text(ai_summary, filename)
        
        if pdf_path:
            return pdf_path, "Discharge summary generated and verified successfully", basic_summary, ai_summary, verified_summary
        return None, "Failed to generate PDF file", basic_summary, ai_summary, verified_summary

    except Exception as e:
        logger.error(f"Error in one-click discharge generation: {str(e)}", exc_info=True)
        return None, f"Error generating discharge summary: {str(e)}", None, None, None

def format_discharge_summary(patient_data: dict) -> str:
    """Format patient data into a discharge summary text."""
    patient_data.setdefault('name_prefix', '')
    patient_data.setdefault('first_name', '')
    patient_data.setdefault('last_name', '')
    patient_data.setdefault('dob', 'Unknown')
    patient_data.setdefault('age', 'Unknown')
    patient_data.setdefault('sex', 'Unknown')
    patient_data.setdefault('id', 'Unknown')
    patient_data.setdefault('address', 'Unknown')
    patient_data.setdefault('city', 'Unknown')
    patient_data.setdefault('state', 'Unknown')
    patient_data.setdefault('zip_code', 'Unknown')
    patient_data.setdefault('phone', 'Unknown')
    patient_data.setdefault('admission_date', 'Unknown')
    patient_data.setdefault('discharge_date', 'Unknown')
    patient_data.setdefault('diagnosis', 'Unknown')
    patient_data.setdefault('medications', 'None specified')
    patient_data.setdefault('doctor_first_name', 'Unknown')
    patient_data.setdefault('doctor_last_name', 'Unknown')
    patient_data.setdefault('hospital_name', 'Unknown')
    patient_data.setdefault('doctor_address', 'Unknown')
    patient_data.setdefault('doctor_city', 'Unknown')
    patient_data.setdefault('doctor_state', 'Unknown')
    patient_data.setdefault('doctor_zip', 'Unknown')

    summary = [
        "DISCHARGE SUMMARY",
        "",
        "PATIENT INFORMATION",
        f"Name: {patient_data['name_prefix']} {patient_data['first_name']} {patient_data['last_name']}".strip(),
        f"Date of Birth: {patient_data['dob']}",
        f"Age: {patient_data['age']}",
        f"Gender: {patient_data['sex']}",
        f"Patient ID: {patient_data['id']}",
        "",
        "CONTACT INFORMATION",
        f"Address: {patient_data['address']}",
        f"City: {patient_data['city']}, {patient_data['state']} {patient_data['zip_code']}",
        f"Phone: {patient_data['phone']}",
        "",
        "ADMISSION INFORMATION",
        f"Admission Date: {patient_data['admission_date']}",
        f"Discharge Date: {patient_data['discharge_date']}",
        f"Diagnosis: {patient_data['diagnosis']}",
        "",
        "MEDICATIONS",
        f"{patient_data['medications']}",
        "",
        "PHYSICIAN INFORMATION",
        f"Physician: Dr. {patient_data['doctor_first_name']} {patient_data['doctor_last_name']}".strip(),
        f"Hospital: {patient_data['hospital_name']}",
        f"Address: {patient_data['doctor_address']}",
        f"City: {patient_data['doctor_city']}, {patient_data['doctor_state']} {patient_data['doctor_zip']}",
    ]
    
    return "\n".join(line for line in summary if line.strip() or line == "")