Leo Liu commited on
Commit
b5f9baf
Β·
verified Β·
1 Parent(s): 84a344d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -7
app.py CHANGED
@@ -4,6 +4,7 @@ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassifica
4
  import torchaudio
5
  import os
6
  import jieba
 
7
 
8
  # Device setup: automatically selects CUDA or CPU
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -31,7 +32,7 @@ def transcribe_audio(audio_path):
31
  return " ".join(results)
32
  return pipe(audio_path)["text"]
33
 
34
- # Load sentiment analysis model (Custom multilingual sentiment analysis)
35
  sentiment_pipe = pipeline("text-classification", model="Leo0129/CustomModel-multilingual-sentiment-analysis", device=device)
36
 
37
  # Text splitting function (using jieba for Chinese text)
@@ -91,14 +92,22 @@ def main():
91
  st.markdown("""
92
  <div class="header">
93
  <h1 style='margin:0;'>πŸŽ™οΈ Customer Service Quality Analyzer</h1>
94
- <p style='color: white; font-size: 1.2rem;'>Evaluate the service quality with simple-uploading!</p>
95
  </div>
96
  """, unsafe_allow_html=True)
97
 
 
 
 
98
  # Audio file uploader
99
- uploaded_file = st.file_uploader("πŸ‘‰πŸ» Upload your Cantonese audio file here...", type=["wav", "mp3", "flac"])
100
 
101
  if uploaded_file is not None:
 
 
 
 
 
102
  st.audio(uploaded_file, format="audio/wav")
103
  temp_audio_path = "uploaded_audio.wav"
104
  with open(temp_audio_path, "wb") as f:
@@ -108,16 +117,24 @@ def main():
108
  status_container = st.empty()
109
 
110
  # Step 1: Audio transcription
111
- status_container.info("πŸ“ **Step 1/2**: Transcribing audio...")
112
- transcript = transcribe_audio(temp_audio_path)
 
113
  progress_bar.progress(50)
114
  st.write("**Transcript:**", transcript)
115
 
116
  # Step 2: Sentiment Analysis
117
- status_container.info("πŸ§‘β€βš–οΈ **Step 2/2**: Evaluating sentiment quality...")
118
  quality_rating = rate_quality(transcript)
119
  progress_bar.progress(100)
120
- st.write("**Sentiment Rating:**", quality_rating)
 
 
 
 
 
 
 
121
 
122
  os.remove(temp_audio_path)
123
 
 
4
  import torchaudio
5
  import os
6
  import jieba
7
+ import magic
8
 
9
  # Device setup: automatically selects CUDA or CPU
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
32
  return " ".join(results)
33
  return pipe(audio_path)["text"]
34
 
35
+ # Load sentiment analysis model
36
  sentiment_pipe = pipeline("text-classification", model="Leo0129/CustomModel-multilingual-sentiment-analysis", device=device)
37
 
38
  # Text splitting function (using jieba for Chinese text)
 
92
  st.markdown("""
93
  <div class="header">
94
  <h1 style='margin:0;'>πŸŽ™οΈ Customer Service Quality Analyzer</h1>
95
+ <p style='color: white; font-size: 1.2rem;'>Evaluate the service quality with simple uploading!</p>
96
  </div>
97
  """, unsafe_allow_html=True)
98
 
99
+ # Step-by-step instructions
100
+ st.markdown("πŸ“€ **Step 1:** Please upload your Cantonese customer service audio file")
101
+
102
  # Audio file uploader
103
+ uploaded_file = st.file_uploader("πŸ‘‰πŸ» Upload your audio file here...", type=["wav", "mp3", "flac"])
104
 
105
  if uploaded_file is not None:
106
+ file_type = magic.from_buffer(uploaded_file.getbuffer(), mime=True)
107
+ if not file_type.startswith("audio/"):
108
+ st.error("⚠️ Sorry, the uploaded file format is not supported. Please upload an audio file in .wav, .mp3, or .flac format.")
109
+ return
110
+
111
  st.audio(uploaded_file, format="audio/wav")
112
  temp_audio_path = "uploaded_audio.wav"
113
  with open(temp_audio_path, "wb") as f:
 
117
  status_container = st.empty()
118
 
119
  # Step 1: Audio transcription
120
+ status_container.info("πŸ“ **Step 1:** Transcribing audio, please wait...")
121
+ with st.spinner('πŸ”„ Transcribing, please wait...'):
122
+ transcript = transcribe_audio(temp_audio_path)
123
  progress_bar.progress(50)
124
  st.write("**Transcript:**", transcript)
125
 
126
  # Step 2: Sentiment Analysis
127
+ status_container.info("πŸ§‘β€βš–οΈ **Step 2:** Analyzing sentiment, please wait...")
128
  quality_rating = rate_quality(transcript)
129
  progress_bar.progress(100)
130
+ st.write("**Sentiment Analysis Result:**", quality_rating)
131
+
132
+ # Download analysis results
133
+ result_text = f"Transcript:\n{transcript}\n\nSentiment Analysis Result: {quality_rating}"
134
+ st.download_button(label="πŸ“₯ Download Analysis Report", data=result_text, file_name="analysis_report.txt")
135
+
136
+ # Customer support info
137
+ st.markdown("❓If you encounter any issues, please contact customer support: πŸ“§ **support@hellotoby.com**")
138
 
139
  os.remove(temp_audio_path)
140