Metal079 SmilingWolf commited on
Commit
897c4b4
·
0 Parent(s):

Duplicate from SmilingWolf/wd-v1-4-tags

Browse files

Co-authored-by: Smiling Wolf <SmilingWolf@users.noreply.huggingface.co>

Files changed (7) hide show
  1. .gitattributes +27 -0
  2. .gitignore +1 -0
  3. README.md +39 -0
  4. Utils/dbimutils.py +54 -0
  5. app.py +285 -0
  6. power.jpg +0 -0
  7. requirements.txt +5 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ images
README.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: WaifuDiffusion v1.4 Tags
3
+ emoji: 💬
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 3.16.2
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: SmilingWolf/wd-v1-4-tags
11
+ ---
12
+
13
+ # Configuration
14
+
15
+ `title`: _string_
16
+ Display title for the Space
17
+
18
+ `emoji`: _string_
19
+ Space emoji (emoji-only character allowed)
20
+
21
+ `colorFrom`: _string_
22
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
23
+
24
+ `colorTo`: _string_
25
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
26
+
27
+ `sdk`: _string_
28
+ Can be either `gradio`, `streamlit`, or `static`
29
+
30
+ `sdk_version` : _string_
31
+ Only applicable for `streamlit` SDK.
32
+ See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
33
+
34
+ `app_file`: _string_
35
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
36
+ Path is relative to the root of the repository.
37
+
38
+ `pinned`: _boolean_
39
+ Whether the Space stays on top of your list.
Utils/dbimutils.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DanBooru IMage Utility functions
2
+
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image
6
+
7
+
8
+ def smart_imread(img, flag=cv2.IMREAD_UNCHANGED):
9
+ if img.endswith(".gif"):
10
+ img = Image.open(img)
11
+ img = img.convert("RGB")
12
+ img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
13
+ else:
14
+ img = cv2.imread(img, flag)
15
+ return img
16
+
17
+
18
+ def smart_24bit(img):
19
+ if img.dtype is np.dtype(np.uint16):
20
+ img = (img / 257).astype(np.uint8)
21
+
22
+ if len(img.shape) == 2:
23
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
24
+ elif img.shape[2] == 4:
25
+ trans_mask = img[:, :, 3] == 0
26
+ img[trans_mask] = [255, 255, 255, 255]
27
+ img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
28
+ return img
29
+
30
+
31
+ def make_square(img, target_size):
32
+ old_size = img.shape[:2]
33
+ desired_size = max(old_size)
34
+ desired_size = max(desired_size, target_size)
35
+
36
+ delta_w = desired_size - old_size[1]
37
+ delta_h = desired_size - old_size[0]
38
+ top, bottom = delta_h // 2, delta_h - (delta_h // 2)
39
+ left, right = delta_w // 2, delta_w - (delta_w // 2)
40
+
41
+ color = [255, 255, 255]
42
+ new_im = cv2.copyMakeBorder(
43
+ img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
44
+ )
45
+ return new_im
46
+
47
+
48
+ def smart_resize(img, size):
49
+ # Assumes the image has already gone through make_square
50
+ if img.shape[0] > size:
51
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
52
+ elif img.shape[0] < size:
53
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
54
+ return img
app.py ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import argparse
4
+ import functools
5
+ import html
6
+ import os
7
+
8
+ import gradio as gr
9
+ import huggingface_hub
10
+ import numpy as np
11
+ import onnxruntime as rt
12
+ import pandas as pd
13
+ import piexif
14
+ import piexif.helper
15
+ import PIL.Image
16
+
17
+ from Utils import dbimutils
18
+
19
+ TITLE = "WaifuDiffusion v1.4 Tags"
20
+ DESCRIPTION = """
21
+ Demo for:
22
+ - [SmilingWolf/wd-v1-4-moat-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2)
23
+ - [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
24
+ - [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
25
+ - [SmilingWolf/wd-v1-4-convnextv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnextv2-tagger-v2)
26
+ - [SmilingWolf/wd-v1-4-vit-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger-v2)
27
+
28
+ Includes "ready to copy" prompt and a prompt analyzer.
29
+
30
+ Modified from [NoCrypt/DeepDanbooru_string](https://huggingface.co/spaces/NoCrypt/DeepDanbooru_string)
31
+ Modified from [hysts/DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
32
+
33
+ PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
34
+
35
+ Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
36
+ """
37
+
38
+ HF_TOKEN = os.environ["HF_TOKEN"]
39
+ MOAT_MODEL_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
40
+ SWIN_MODEL_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
41
+ CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
42
+ CONV2_MODEL_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
43
+ VIT_MODEL_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
44
+ MODEL_FILENAME = "model.onnx"
45
+ LABEL_FILENAME = "selected_tags.csv"
46
+
47
+
48
+ def parse_args() -> argparse.Namespace:
49
+ parser = argparse.ArgumentParser()
50
+ parser.add_argument("--score-slider-step", type=float, default=0.05)
51
+ parser.add_argument("--score-general-threshold", type=float, default=0.35)
52
+ parser.add_argument("--score-character-threshold", type=float, default=0.85)
53
+ parser.add_argument("--share", action="store_true")
54
+ return parser.parse_args()
55
+
56
+
57
+ def load_model(model_repo: str, model_filename: str) -> rt.InferenceSession:
58
+ path = huggingface_hub.hf_hub_download(
59
+ model_repo, model_filename, use_auth_token=HF_TOKEN
60
+ )
61
+ model = rt.InferenceSession(path)
62
+ return model
63
+
64
+
65
+ def change_model(model_name):
66
+ global loaded_models
67
+
68
+ if model_name == "MOAT":
69
+ model = load_model(MOAT_MODEL_REPO, MODEL_FILENAME)
70
+ elif model_name == "SwinV2":
71
+ model = load_model(SWIN_MODEL_REPO, MODEL_FILENAME)
72
+ elif model_name == "ConvNext":
73
+ model = load_model(CONV_MODEL_REPO, MODEL_FILENAME)
74
+ elif model_name == "ConvNextV2":
75
+ model = load_model(CONV2_MODEL_REPO, MODEL_FILENAME)
76
+ elif model_name == "ViT":
77
+ model = load_model(VIT_MODEL_REPO, MODEL_FILENAME)
78
+
79
+ loaded_models[model_name] = model
80
+ return loaded_models[model_name]
81
+
82
+
83
+ def load_labels() -> list[str]:
84
+ path = huggingface_hub.hf_hub_download(
85
+ MOAT_MODEL_REPO, LABEL_FILENAME, use_auth_token=HF_TOKEN
86
+ )
87
+ df = pd.read_csv(path)
88
+
89
+ tag_names = df["name"].tolist()
90
+ rating_indexes = list(np.where(df["category"] == 9)[0])
91
+ general_indexes = list(np.where(df["category"] == 0)[0])
92
+ character_indexes = list(np.where(df["category"] == 4)[0])
93
+ return tag_names, rating_indexes, general_indexes, character_indexes
94
+
95
+
96
+ def plaintext_to_html(text):
97
+ text = (
98
+ "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split("\n")]) + "</p>"
99
+ )
100
+ return text
101
+
102
+
103
+ def predict(
104
+ image: PIL.Image.Image,
105
+ model_name: str,
106
+ general_threshold: float,
107
+ character_threshold: float,
108
+ tag_names: list[str],
109
+ rating_indexes: list[np.int64],
110
+ general_indexes: list[np.int64],
111
+ character_indexes: list[np.int64],
112
+ ):
113
+ global loaded_models
114
+
115
+ rawimage = image
116
+
117
+ model = loaded_models[model_name]
118
+ if model is None:
119
+ model = change_model(model_name)
120
+
121
+ _, height, width, _ = model.get_inputs()[0].shape
122
+
123
+ # Alpha to white
124
+ image = image.convert("RGBA")
125
+ new_image = PIL.Image.new("RGBA", image.size, "WHITE")
126
+ new_image.paste(image, mask=image)
127
+ image = new_image.convert("RGB")
128
+ image = np.asarray(image)
129
+
130
+ # PIL RGB to OpenCV BGR
131
+ image = image[:, :, ::-1]
132
+
133
+ image = dbimutils.make_square(image, height)
134
+ image = dbimutils.smart_resize(image, height)
135
+ image = image.astype(np.float32)
136
+ image = np.expand_dims(image, 0)
137
+
138
+ input_name = model.get_inputs()[0].name
139
+ label_name = model.get_outputs()[0].name
140
+ probs = model.run([label_name], {input_name: image})[0]
141
+
142
+ labels = list(zip(tag_names, probs[0].astype(float)))
143
+
144
+ # First 4 labels are actually ratings: pick one with argmax
145
+ ratings_names = [labels[i] for i in rating_indexes]
146
+ rating = dict(ratings_names)
147
+
148
+ # Then we have general tags: pick any where prediction confidence > threshold
149
+ general_names = [labels[i] for i in general_indexes]
150
+ general_res = [x for x in general_names if x[1] > general_threshold]
151
+ general_res = dict(general_res)
152
+
153
+ # Everything else is characters: pick any where prediction confidence > threshold
154
+ character_names = [labels[i] for i in character_indexes]
155
+ character_res = [x for x in character_names if x[1] > character_threshold]
156
+ character_res = dict(character_res)
157
+
158
+ b = dict(sorted(general_res.items(), key=lambda item: item[1], reverse=True))
159
+ a = (
160
+ ", ".join(list(b.keys()))
161
+ .replace("_", " ")
162
+ .replace("(", "\(")
163
+ .replace(")", "\)")
164
+ )
165
+ c = ", ".join(list(b.keys()))
166
+
167
+ items = rawimage.info
168
+ geninfo = ""
169
+
170
+ if "exif" in rawimage.info:
171
+ exif = piexif.load(rawimage.info["exif"])
172
+ exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b"")
173
+ try:
174
+ exif_comment = piexif.helper.UserComment.load(exif_comment)
175
+ except ValueError:
176
+ exif_comment = exif_comment.decode("utf8", errors="ignore")
177
+
178
+ items["exif comment"] = exif_comment
179
+ geninfo = exif_comment
180
+
181
+ for field in [
182
+ "jfif",
183
+ "jfif_version",
184
+ "jfif_unit",
185
+ "jfif_density",
186
+ "dpi",
187
+ "exif",
188
+ "loop",
189
+ "background",
190
+ "timestamp",
191
+ "duration",
192
+ ]:
193
+ items.pop(field, None)
194
+
195
+ geninfo = items.get("parameters", geninfo)
196
+
197
+ info = f"""
198
+ <p><h4>PNG Info</h4></p>
199
+ """
200
+ for key, text in items.items():
201
+ info += (
202
+ f"""
203
+ <div>
204
+ <p><b>{plaintext_to_html(str(key))}</b></p>
205
+ <p>{plaintext_to_html(str(text))}</p>
206
+ </div>
207
+ """.strip()
208
+ + "\n"
209
+ )
210
+
211
+ if len(info) == 0:
212
+ message = "Nothing found in the image."
213
+ info = f"<div><p>{message}<p></div>"
214
+
215
+ return (a, c, rating, character_res, general_res, info)
216
+
217
+
218
+ def main():
219
+ global loaded_models
220
+ loaded_models = {
221
+ "MOAT": None,
222
+ "SwinV2": None,
223
+ "ConvNext": None,
224
+ "ConvNextV2": None,
225
+ "ViT": None,
226
+ }
227
+
228
+ args = parse_args()
229
+
230
+ change_model("MOAT")
231
+
232
+ tag_names, rating_indexes, general_indexes, character_indexes = load_labels()
233
+
234
+ func = functools.partial(
235
+ predict,
236
+ tag_names=tag_names,
237
+ rating_indexes=rating_indexes,
238
+ general_indexes=general_indexes,
239
+ character_indexes=character_indexes,
240
+ )
241
+
242
+ gr.Interface(
243
+ fn=func,
244
+ inputs=[
245
+ gr.Image(type="pil", label="Input"),
246
+ gr.Radio(
247
+ ["MOAT", "SwinV2", "ConvNext", "ConvNextV2", "ViT"],
248
+ value="MOAT",
249
+ label="Model",
250
+ ),
251
+ gr.Slider(
252
+ 0,
253
+ 1,
254
+ step=args.score_slider_step,
255
+ value=args.score_general_threshold,
256
+ label="General Tags Threshold",
257
+ ),
258
+ gr.Slider(
259
+ 0,
260
+ 1,
261
+ step=args.score_slider_step,
262
+ value=args.score_character_threshold,
263
+ label="Character Tags Threshold",
264
+ ),
265
+ ],
266
+ outputs=[
267
+ gr.Textbox(label="Output (string)"),
268
+ gr.Textbox(label="Output (raw string)"),
269
+ gr.Label(label="Rating"),
270
+ gr.Label(label="Output (characters)"),
271
+ gr.Label(label="Output (tags)"),
272
+ gr.HTML(),
273
+ ],
274
+ examples=[["power.jpg", "MOAT", 0.35, 0.85]],
275
+ title=TITLE,
276
+ description=DESCRIPTION,
277
+ allow_flagging="never",
278
+ ).launch(
279
+ enable_queue=True,
280
+ share=args.share,
281
+ )
282
+
283
+
284
+ if __name__ == "__main__":
285
+ main()
power.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pillow>=9.0.0
2
+ piexif>=1.1.3
3
+ onnxruntime>=1.12.0
4
+ opencv-python
5
+ huggingface-hub