delete due to wrong path
Browse files- content.py +0 -169
content.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
|
2 |
-
displayname2datasetname = {
|
3 |
-
'LibriSpeech-Clean' : 'librispeech_test_clean',
|
4 |
-
'LibriSpeech-Other' : 'librispeech_test_other',
|
5 |
-
'CommonVoice-15-EN' : 'common_voice_15_en_test',
|
6 |
-
'Peoples-Speech' : 'peoples_speech_test',
|
7 |
-
'GigaSpeech-1' : 'gigaspeech_test',
|
8 |
-
'Earnings-21' : 'earnings21_test',
|
9 |
-
'Earnings-22' : 'earnings22_test',
|
10 |
-
'TED-LIUM-3' : 'tedlium3_test',
|
11 |
-
'TED-LIUM-3-LongForm' : 'tedlium3_long_form_test',
|
12 |
-
'AISHELL-ASR-ZH' : 'aishell_asr_zh_test',
|
13 |
-
'CoVoST2-EN-ID' : 'covost2_en_id_test',
|
14 |
-
'CoVoST2-EN-ZH' : 'covost2_en_zh_test',
|
15 |
-
'CoVoST2-EN-TA' : 'covost2_en_ta_test',
|
16 |
-
'CoVoST2-ID-EN' : 'covost2_id_en_test',
|
17 |
-
'CoVoST2-ZH-EN' : 'covost2_zh_en_test',
|
18 |
-
'CoVoST2-TA-EN' : 'covost2_ta_en_test',
|
19 |
-
'CN-College-Listen-MCQ': 'cn_college_listen_mcq_test',
|
20 |
-
'DREAM-TTS-MCQ' : 'dream_tts_mcq_test',
|
21 |
-
'SLUE-P2-SQA5' : 'slue_p2_sqa5_test',
|
22 |
-
'Public-SG-Speech-QA' : 'public_sg_speech_qa_test',
|
23 |
-
'Spoken-SQuAD' : 'spoken_squad_test',
|
24 |
-
'OpenHermes-Audio' : 'openhermes_audio_test',
|
25 |
-
'ALPACA-Audio' : 'alpaca_audio_test',
|
26 |
-
'WavCaps' : 'wavcaps_test',
|
27 |
-
'AudioCaps' : 'audiocaps_test',
|
28 |
-
'Clotho-AQA' : 'clotho_aqa_test',
|
29 |
-
'WavCaps-QA' : 'wavcaps_qa_test',
|
30 |
-
'AudioCaps-QA' : 'audiocaps_qa_test',
|
31 |
-
'VoxCeleb-Accent' : 'voxceleb_accent_test',
|
32 |
-
'MNSC-AR-Sentence' : 'imda_ar_sentence',
|
33 |
-
'MNSC-AR-Dialogue' : 'imda_ar_dialogue',
|
34 |
-
'VoxCeleb-Gender' : 'voxceleb_gender_test',
|
35 |
-
'IEMOCAP-Gender' : 'iemocap_gender_test',
|
36 |
-
'IEMOCAP-Emotion' : 'iemocap_emotion_test',
|
37 |
-
'MELD-Sentiment' : 'meld_sentiment_test',
|
38 |
-
'MELD-Emotion' : 'meld_emotion_test',
|
39 |
-
'MuChoMusic' : 'muchomusic_test',
|
40 |
-
'MNSC-PART1-ASR' : 'imda_part1_asr_test',
|
41 |
-
'MNSC-PART2-ASR' : 'imda_part2_asr_test',
|
42 |
-
'MNSC-PART3-ASR' : 'imda_part3_30s_asr_test',
|
43 |
-
'MNSC-PART4-ASR' : 'imda_part4_30s_asr_test',
|
44 |
-
'MNSC-PART5-ASR' : 'imda_part5_30s_asr_test',
|
45 |
-
'MNSC-PART6-ASR' : 'imda_part6_30s_asr_test',
|
46 |
-
'MNSC-PART3-SQA' : 'imda_part3_30s_sqa_human_test',
|
47 |
-
'MNSC-PART4-SQA' : 'imda_part4_30s_sqa_human_test',
|
48 |
-
'MNSC-PART5-SQA' : 'imda_part5_30s_sqa_human_test',
|
49 |
-
'MNSC-PART6-SQA' : 'imda_part6_30s_sqa_human_test',
|
50 |
-
'MNSC-PART3-SDS' : 'imda_part3_30s_ds_human_test',
|
51 |
-
'MNSC-PART4-SDS' : 'imda_part4_30s_ds_human_test',
|
52 |
-
'MNSC-PART5-SDS' : 'imda_part5_30s_ds_human_test',
|
53 |
-
'MNSC-PART6-SDS' : 'imda_part6_30s_ds_human_test',
|
54 |
-
|
55 |
-
'CNA' : 'cna_test',
|
56 |
-
'IDPC' : 'idpc_test',
|
57 |
-
'Parliament' : 'parliament_test',
|
58 |
-
'UKUS-News' : 'ukusnews_test',
|
59 |
-
'Mediacorp' : 'mediacorp_test',
|
60 |
-
'IDPC-Short' : 'idpc_short_test',
|
61 |
-
'Parliament-Short': 'parliament_short_test',
|
62 |
-
'UKUS-News-Short' : 'ukusnews_short_test',
|
63 |
-
'Mediacorp-Short' : 'mediacorp_short_test',
|
64 |
-
'YouTube ASR: English with Singapore Content': 'ytb_asr_batch1',
|
65 |
-
'YouTube ASR: English with Strong Emotion': 'ytb_asr_batch2',
|
66 |
-
'YouTube ASR: Malay with English Prompt': 'ytb_asr_batch3_ms',
|
67 |
-
'YouTube ASR: Malay with Malay Prompt': 'ytb_asr_batch3_ms_ms_prompt',
|
68 |
-
|
69 |
-
'SEAME-Dev-Mandarin' : 'seame_dev_man',
|
70 |
-
'SEAME-Dev-Singlish' : 'seame_dev_sge',
|
71 |
-
|
72 |
-
'YouTube SQA: English with Singapore Content': 'ytb_sqa_batch1',
|
73 |
-
'YouTube SDS: English with Singapore Content': 'ytb_sds_batch1',
|
74 |
-
'YouTube PQA: English with Singapore Content': 'ytb_pqa_batch1',
|
75 |
-
|
76 |
-
}
|
77 |
-
|
78 |
-
datasetname2diaplayname = {datasetname: displayname for displayname, datasetname in displayname2datasetname.items()}
|
79 |
-
|
80 |
-
|
81 |
-
dataset_diaplay_information = {
|
82 |
-
'LibriSpeech-Clean' : 'A clean, high-quality testset of the LibriSpeech dataset, used for ASR testing.',
|
83 |
-
'LibriSpeech-Other' : 'A more challenging, noisier testset of the LibriSpeech dataset for ASR testing.',
|
84 |
-
'CommonVoice-15-EN' : 'Test set from the Common Voice project, which is a crowd-sourced, multilingual speech dataset.',
|
85 |
-
'Peoples-Speech' : 'A large-scale, open-source speech recognition dataset, with diverse accents and domains.',
|
86 |
-
'GigaSpeech-1' : 'A large-scale ASR dataset with diverse audio sources like podcasts, interviews, etc.',
|
87 |
-
'Earnings-21' : 'ASR test dataset focused on earnings calls from 2021, with professional speech and financial jargon.',
|
88 |
-
'Earnings-22' : 'Similar to Earnings21, but covering earnings calls from 2022.',
|
89 |
-
'TED-LIUM-3' : 'A test set derived from TED talks, covering diverse speakers and topics.',
|
90 |
-
'TED-LIUM-3-LongForm' : 'A longer version of the TED-LIUM dataset, containing extended audio samples. This poses challenges to existing fusion methods in handling long audios. However, it provides benchmark for future development.',
|
91 |
-
'AISHELL-ASR-ZH' : 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.',
|
92 |
-
'CoVoST2-EN-ID' : 'CoVoST 2 dataset for speech translation from English to Indonesian.',
|
93 |
-
'CoVoST2-EN-ZH' : 'CoVoST 2 dataset for speech translation from English to Chinese.',
|
94 |
-
'CoVoST2-EN-TA' : 'CoVoST 2 dataset for speech translation from English to Tamil.',
|
95 |
-
'CoVoST2-ID-EN' : 'CoVoST 2 dataset for speech translation from Indonesian to English.',
|
96 |
-
'CoVoST2-ZH-EN' : 'CoVoST 2 dataset for speech translation from Chinese to English.',
|
97 |
-
'CoVoST2-TA-EN' : 'CoVoST 2 dataset for speech translation from Tamil to English.',
|
98 |
-
'CN-College-Listen-MCQ': 'Chinese College English Listening Test, with multiple-choice questions.',
|
99 |
-
'DREAM-TTS-MCQ' : 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.',
|
100 |
-
'SLUE-P2-SQA5' : 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.',
|
101 |
-
'Public-SG-Speech-QA' : 'Public dataset for speech-based question answering, gathered from Singapore.',
|
102 |
-
'Spoken-SQuAD' : 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.',
|
103 |
-
'OpenHermes-Audio' : 'Test set for spoken instructions. Synthesized from the OpenHermes dataset.',
|
104 |
-
'ALPACA-Audio' : 'Spoken version of the ALPACA dataset, used for evaluating instruction following in audio.',
|
105 |
-
'WavCaps' : 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.',
|
106 |
-
'AudioCaps' : 'AudioCaps dataset, used for generating captions from general audio events.',
|
107 |
-
'Clotho-AQA' : 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.',
|
108 |
-
'WavCaps-QA' : 'Question-answering test dataset derived from WavCaps, focusing on audio content.',
|
109 |
-
'AudioCaps-QA' : 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.',
|
110 |
-
'VoxCeleb-Accent' : 'Test dataset for accent recognition, based on VoxCeleb, a large speaker identification dataset.',
|
111 |
-
'MNSC-AR-Sentence' : 'Accent recognition based on the IMDA NSC dataset, focusing on sentence-level accents.',
|
112 |
-
'MNSC-AR-Dialogue' : 'Accent recognition based on the IMDA NSC dataset, focusing on dialogue-level accents.',
|
113 |
-
|
114 |
-
'VoxCeleb-Gender': 'Test dataset for gender classification, also derived from VoxCeleb.',
|
115 |
-
'IEMOCAP-Gender' : 'Gender classification based on the IEMOCAP dataset.',
|
116 |
-
'IEMOCAP-Emotion': 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.',
|
117 |
-
'MELD-Sentiment' : 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.',
|
118 |
-
'MELD-Emotion' : 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.',
|
119 |
-
'MuChoMusic' : 'Test dataset for music understanding, from paper: MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models.',
|
120 |
-
'MNSC-PART1-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 1.',
|
121 |
-
'MNSC-PART2-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 2.',
|
122 |
-
'MNSC-PART3-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 3.',
|
123 |
-
'MNSC-PART4-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 4.',
|
124 |
-
'MNSC-PART5-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 5.',
|
125 |
-
'MNSC-PART6-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 6.',
|
126 |
-
'MNSC-PART3-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 3.',
|
127 |
-
'MNSC-PART4-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 4.',
|
128 |
-
'MNSC-PART5-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 5.',
|
129 |
-
'MNSC-PART6-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 6.',
|
130 |
-
'MNSC-PART3-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 3.',
|
131 |
-
'MNSC-PART4-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 4.',
|
132 |
-
'MNSC-PART5-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 5.',
|
133 |
-
'MNSC-PART6-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 6.',
|
134 |
-
|
135 |
-
'CNA' : 'Under Development',
|
136 |
-
'IDPC' : 'Under Development',
|
137 |
-
'Parliament' : 'Under Development',
|
138 |
-
'UKUS-News' : 'Under Development',
|
139 |
-
'Mediacorp' : 'Under Development',
|
140 |
-
'IDPC-Short' : 'Under Development',
|
141 |
-
'Parliament-Short': 'Under Development',
|
142 |
-
'UKUS-News-Short' : 'Under Development',
|
143 |
-
'Mediacorp-Short' : 'Under Development',
|
144 |
-
'YouTube ASR: English Singapore Content' : '''\nYouTube Evaluation Dataset for ASR Task: This dataset include English and Singlish with Singapore Content.''',
|
145 |
-
'YouTube ASR: English with Strong Emotion' : '\nYouTube Evaluation Dataset for ASR Task. English with strong emotions',
|
146 |
-
'YouTube ASR: Malay English Prompt': 'YouTube ASR Dataset, Malay and Malay-English CondeSwitch',
|
147 |
-
'YouTube ASR: Malay with Malay Prompt': 'YouTube ASR Dataset, Malay and Malay-English CondeSwitch. Use Malay prompts',
|
148 |
-
|
149 |
-
'SEAME-Dev-Mandarin' : 'Under Development',
|
150 |
-
'SEAME-Dev-Singlish' : 'Under Development',
|
151 |
-
|
152 |
-
'YouTube SQA: English with Singapore Content': 'Under Development',
|
153 |
-
'YouTube SDS: English with Singapore Content': 'Under Development',
|
154 |
-
'YouTube PQA: English with Singapore Content': 'Under Development',
|
155 |
-
|
156 |
-
|
157 |
-
}
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
metrics_info = {
|
163 |
-
'wer' : 'Word Error Rate (WER) - The Lower, the better.',
|
164 |
-
'llama3_70b_judge_binary': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
165 |
-
'llama3_70b_judge' : 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
166 |
-
'meteor' : 'METEOR Score. The higher, the better.',
|
167 |
-
'bleu' : 'BLEU Score. The higher, the better.',
|
168 |
-
}
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|