File size: 3,443 Bytes
398027f
 
 
 
 
 
 
3082762
398027f
deded5a
398027f
 
 
 
 
 
 
 
 
 
 
 
 
75be3f6
398027f
75be3f6
398027f
 
75be3f6
 
 
398027f
 
 
fc7eb05
398027f
75be3f6
 
 
 
398027f
3082762
 
398027f
3082762
8cd4b4f
 
 
398027f
 
3082762
398027f
 
75be3f6
398027f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4351a35
3082762
4351a35
3082762
4351a35
398027f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3082762
 
 
 
 
398027f
3082762
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
# from streamlit_echarts import JsCode
from streamlit_javascript import st_javascript
# from PIL import Image 
from app.show_examples import *

links_dic = {}

links_dic = {k.lower().replace('_', '-') : v for k, v in links_dic.items()}

# huggingface_image = Image.open('style/huggingface.jpg')

def nav_to(value):
    try:
        url = links_dic[str(value).lower()]
        js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
        st_javascript(js)
    except:
        pass

def draw(folder_name, category_name, dataset_name, metrics):
    
    folder = f"./results/{metrics}/"

    display_names = {
        'SU': 'Speech Understanding',
        'ASU': 'Audio Scene Understanding',
        'VU': 'Voice Understanding'
    }
    
    data_path = f'{folder}/{category_name.lower()}.csv'
    chart_data = pd.read_csv(data_path).round(2)

    # if sorted == 'Ascending':
    #     ascend = True 
    # else:
    #     ascend = False

    new_dataset_name = dataset_name.replace('-', '_').lower()
    chart_data = chart_data[['Model', new_dataset_name]]
    
    chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=True).dropna(axis=0)

    if len(chart_data) == 0:
        return
    
    min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1) 
    max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)         

    options = {
        "title": {"text": f"{display_names[folder_name.upper()]}"},
        "tooltip": {
            "trigger": "axis",
            "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
            "triggerOn": 'mousemove',
        },
        "legend": {"data": ['Overall Accuracy']},
        "toolbox": {"feature": {"saveAsImage": {}}},
        "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
        "xAxis": [
            {
                "type": "category",
                "boundaryGap": False,
                "triggerEvent": True,
                "data": chart_data['Model'].tolist(),
            }
        ],
        "yAxis": [{"type": "value", 
                    "min": min_value,
                    "max": max_value, 
                    # "splitNumber": 10
                    }],
        "series": [{
                "name": f"{dataset_name}",
                "type": "line",
                "data": chart_data[f'{new_dataset_name}'].tolist(),
            }],
    }
    
    events = {
        "click": "function(params) { return params.value }"
    }

    value = st_echarts(options=options, events=events, height="500px")
    
    if value != None:
        # print(value)
        nav_to(value)

    # if value != None:
    #     highlight_table_line(value)

    '''
    Show table
    '''
    # st.divider()
    with st.expander('TABLE'):
    # chart_data['Link'] = chart_data['Model'].map(links_dic)
        st.dataframe(chart_data,
                    #  column_config = {
                    #      "Link": st.column_config.LinkColumn(
                    #          display_text= st.image(huggingface_image)
                    #      ),
                    #  }, 
                        hide_index = True, 
                        use_container_width=True)
    '''
    show samples
    '''
    show_examples(category_name, dataset_name, chart_data['Model'].tolist())