|
import pydiffvg |
|
import torch |
|
import skimage |
|
|
|
pydiffvg.set_print_timing(True) |
|
|
|
|
|
pydiffvg.set_use_gpu(torch.cuda.is_available()) |
|
|
|
canvas_width, canvas_height = 256, 256 |
|
num_control_points = torch.tensor([2]) |
|
points = torch.tensor([[120.0, 30.0], |
|
[150.0, 60.0], |
|
[ 90.0, 198.0], |
|
[ 60.0, 218.0]]) |
|
thickness = torch.tensor([10.0, 5.0, 4.0, 20.0]) |
|
path = pydiffvg.Path(num_control_points = num_control_points, |
|
points = points, |
|
is_closed = False, |
|
stroke_width = thickness) |
|
shapes = [path] |
|
path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), |
|
fill_color = None, |
|
stroke_color = torch.tensor([0.6, 0.3, 0.6, 0.8])) |
|
shape_groups = [path_group] |
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\ |
|
canvas_width, canvas_height, shapes, shape_groups) |
|
|
|
render = pydiffvg.RenderFunction.apply |
|
img = render(256, |
|
256, |
|
2, |
|
2, |
|
0, |
|
None, |
|
*scene_args) |
|
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_open_curve_thickness/target.png', gamma=2.2) |
|
target = img.clone() |
|
|
|
|
|
|
|
points_n = torch.tensor([[100.0/256.0, 40.0/256.0], |
|
[155.0/256.0, 65.0/256.0], |
|
[100.0/256.0, 180.0/256.0], |
|
[ 65.0/256.0, 238.0/256.0]], |
|
requires_grad = True) |
|
thickness_n = torch.tensor([10.0 / 100.0, 10.0 / 100.0, 10.0 / 100.0, 10.0 / 100.0], |
|
requires_grad = True) |
|
stroke_color = torch.tensor([0.4, 0.7, 0.5, 0.5], requires_grad=True) |
|
path.points = points_n * 256 |
|
path.stroke_width = thickness_n * 100 |
|
path_group.stroke_color = stroke_color |
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\ |
|
canvas_width, canvas_height, shapes, shape_groups) |
|
img = render(256, |
|
256, |
|
2, |
|
2, |
|
1, |
|
None, |
|
*scene_args) |
|
pydiffvg.imwrite(img.cpu(), 'results/single_open_curve_thickness/init.png', gamma=2.2) |
|
|
|
|
|
optimizer = torch.optim.Adam([points_n, thickness_n, stroke_color], lr=1e-2) |
|
|
|
for t in range(200): |
|
print('iteration:', t) |
|
optimizer.zero_grad() |
|
|
|
path.points = points_n * 256 |
|
path.stroke_width = thickness_n * 100 |
|
path_group.stroke_color = stroke_color |
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\ |
|
canvas_width, canvas_height, shapes, shape_groups) |
|
img = render(256, |
|
256, |
|
2, |
|
2, |
|
t+1, |
|
None, |
|
*scene_args) |
|
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_open_curve_thickness/iter_{}.png'.format(t), gamma=2.2) |
|
|
|
loss = (img - target).pow(2).sum() |
|
print('loss:', loss.item()) |
|
|
|
|
|
loss.backward() |
|
|
|
print('points_n.grad:', points_n.grad) |
|
print('thickness_n.grad:', thickness_n.grad) |
|
print('stroke_color.grad:', stroke_color.grad) |
|
|
|
|
|
optimizer.step() |
|
|
|
print('points:', path.points) |
|
print('thickness:', path.stroke_width) |
|
print('stroke_color:', path_group.stroke_color) |
|
|
|
|
|
path.points = points_n * 256 |
|
path.stroke_width = thickness_n * 100 |
|
path_group.stroke_color = stroke_color |
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\ |
|
canvas_width, canvas_height, shapes, shape_groups) |
|
img = render(256, |
|
256, |
|
2, |
|
2, |
|
202, |
|
None, |
|
*scene_args) |
|
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_open_curve_thickness/final.png') |
|
|
|
|
|
from subprocess import call |
|
call(["ffmpeg", "-framerate", "24", "-i", |
|
"results/single_open_curve_thickness/iter_%d.png", "-vb", "20M", |
|
"results/single_open_curve_thickness/out.mp4"]) |
|
|