import json import numpy as np from sentence_transformers import SentenceTransformer from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from pydantic import BaseModel from llama_cpp import Llama from huggingface_hub import login, hf_hub_download import logging import os import faiss # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = FastAPI() # Authenticate with Hugging Face hf_token = os.getenv("HF_TOKEN") if not hf_token: logger.error("HF_TOKEN environment variable not set.") raise ValueError("HF_TOKEN not set") login(token=hf_token) # Models sentence_transformer_model = "all-MiniLM-L6-v2" repo_id = "bartowski/Llama-3.2-3B-Instruct-GGUF" # Switched to 3B; revert to "bartowski/Llama-3.2-1B-Instruct-GGUF" if too heavy filename = "Llama-3.2-3B-Instruct-Q4_K_M.gguf" # Use "Llama-3.2-1B-Instruct-Q4_K_M.gguf" for 1B # Define FAQs faqs = [ {"question": "What is your name?", "answer": "My name is Tim Luka Horstmann."}, {"question": "Where do you live?", "answer": "I live in Paris, France."}, {"question": "What is your education?", "answer": "I am currently pursuing a MSc in Data and AI at Institut Polytechnique de Paris. I also hold an MPhil in Advanced Computer Science from the University of Cambridge and a BSc in Business Informatics from RheinMain University of Applied Sciences."}, {"question": "What are your skills?", "answer": "I am proficient in Python, Java, SQL, Cypher, SPARQL, VBA, JavaScript, HTML/CSS, and Ruby. I also use tools like PyTorch, Hugging Face, Scikit-Learn, NumPy, Pandas, Matplotlib, Jupyter, Git, Bash, IoT, Ansible, QuickSight, and Wordpress."}, # Add more from your CV ] try: # Load CV embeddings and build FAISS index logger.info("Loading CV embeddings from cv_embeddings.json") with open("cv_embeddings.json", "r", encoding="utf-8") as f: cv_data = json.load(f) cv_chunks = [item["chunk"] for item in cv_data] cv_embeddings = np.array([item["embedding"] for item in cv_data]).astype('float32') faiss.normalize_L2(cv_embeddings) faiss_index = faiss.IndexFlatIP(cv_embeddings.shape[1]) faiss_index.add(cv_embeddings) logger.info("FAISS index built successfully") # Load embedding model logger.info("Loading SentenceTransformer model") embedder = SentenceTransformer(sentence_transformer_model, device="cpu") logger.info("SentenceTransformer model loaded") # Compute FAQ embeddings faq_questions = [faq["question"] for faq in faqs] faq_embeddings = embedder.encode(faq_questions, convert_to_numpy=True).astype("float32") faiss.normalize_L2(faq_embeddings) # Load Llama model logger.info(f"Loading {filename} model") model_path = hf_hub_download( repo_id=repo_id, filename=filename, local_dir="/app/cache" if os.getenv("HF_HOME") else None, token=hf_token, ) generator = Llama( model_path=model_path, n_ctx=1024, n_threads=2, n_batch=512, n_gpu_layers=0, verbose=True, ) logger.info(f"{filename} model loaded") except Exception as e: logger.error(f"Startup error: {str(e)}", exc_info=True) raise def retrieve_context(query, top_k=3): try: query_embedding = embedder.encode(query, convert_to_numpy=True).astype("float32") query_embedding = query_embedding.reshape(1, -1) faiss.normalize_L2(query_embedding) distances, indices = faiss_index.search(query_embedding, top_k) return "\n".join([cv_chunks[i] for i in indices[0]]) except Exception as e: logger.error(f"Error in retrieve_context: {str(e)}") raise def stream_response(query): try: logger.info(f"Processing query: {query}") # Check FAQ cache query_embedding = embedder.encode(query, convert_to_numpy=True).astype("float32") query_embedding = query_embedding.reshape(1, -1) faiss.normalize_L2(query_embedding) similarities = np.dot(faq_embeddings, query_embedding.T).flatten() max_sim = np.max(similarities) if max_sim > 0.9: idx = np.argmax(similarities) yield f"data: {faqs[idx]['answer']}\n\n" yield "data: [DONE]\n\n" else: context = retrieve_context(query) prompt = ( f"<|im_start|>system\nYou are Tim Luka Horstmann, a Computer Scientist. Here is your CV:\n{context}\n" f"A user is asking you a question about your CV. Respond as yourself, using the first person, and base your answer strictly on the information provided in the CV. Do not invent or assume any details not mentioned.\n<|im_end>\n" f"<|im_start|>user\n{query}\n<|im_end>\n" f"<|im_start|>assistant\n" ) for chunk in generator( prompt, max_tokens=512, stream=True, stop=["<|im_end|>", "[DONE]"], temperature=0.5, # Lower for factual responses top_p=0.9, repeat_penalty=1.1, # Reduce repetition/hallucination ): yield f"data: {chunk['choices'][0]['text']}\n\n" yield "data: [DONE]\n\n" except Exception as e: logger.error(f"Error in stream_response: {str(e)}") yield f"data: Error: {str(e)}\n\n" yield "data: [DONE]\n\n" class QueryRequest(BaseModel): data: list @app.post("/api/predict") async def predict(request: QueryRequest): if not request.data or not isinstance(request.data, list) or len(request.data) < 1: raise HTTPException(status_code=400, detail="Invalid input: 'data' must be a non-empty list") query = request.data[0] return StreamingResponse(stream_response(query), media_type="text/event-stream") @app.get("/health") async def health_check(): return {"status": "healthy"} @app.get("/model_info") async def model_info(): return { "model_name": "Llama-3.2-3B-Instruct-GGUF", "model_size": "3B", "embedding_model": sentence_transformer_model, "faiss_index_size": len(cv_chunks), "faiss_index_dim": cv_embeddings.shape[1], } @app.on_event("startup") async def warm_up_model(): logger.info("Warming up the model...") dummy_query = "Hi" for _ in stream_response(dummy_query): pass logger.info("Model warm-up complete.")