mjuvilla commited on
Commit
ad4ed41
·
1 Parent(s): 580106a

moved scripts to src folder, created new create that hopefully should be able to work with any type of document

Browse files
requirements.txt CHANGED
@@ -4,4 +4,7 @@ torch~=2.6.0
4
  transformers~=4.51.2
5
  iso-639~=0.4.5
6
  protobuf~=6.30.2
7
- sentencepiece~=0.2.0
 
 
 
 
4
  transformers~=4.51.2
5
  iso-639~=0.4.5
6
  protobuf~=6.30.2
7
+ sentencepiece~=0.2.0
8
+ requests~=2.32.3
9
+ tqdm~=4.67.1
10
+ gradio~=5.25.1
src/aligner.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import fileinput
2
+ import os
3
+ import platform
4
+ from subprocess import Popen, PIPE
5
+
6
+ # Class to align original and translated sentences
7
+ # based on https://github.com/mtuoc/MTUOC-server/blob/main/GetWordAlignments_fast_align.py
8
+ class Aligner():
9
+ def __init__(self, config_folder, source_lang, target_lang, temp_folder):
10
+ forward_params_path = os.path.join(config_folder, f"{source_lang}-{target_lang}.params")
11
+ reverse_params_path = os.path.join(config_folder, f"{target_lang}-{source_lang}.params")
12
+
13
+ fwd_T, fwd_m = self.__read_err(os.path.join(config_folder, f"{source_lang}-{target_lang}.err"))
14
+ rev_T, rev_m = self.__read_err(os.path.join(config_folder, f"{target_lang}-{source_lang}.err"))
15
+
16
+ self.forward_alignment_file_path = os.path.join(temp_folder, "forward.align")
17
+ self.reverse_alignment_file_path = os.path.join(temp_folder, "reverse.align")
18
+
19
+ if platform.system().lower() == "windows":
20
+ fastalign_bin = "fast_align.exe"
21
+ atools_bin = "atools.exe"
22
+ else:
23
+ fastalign_bin = "./fast_align"
24
+ atools_bin = "./atools"
25
+
26
+ self.temp_file_path = os.path.join(temp_folder, "tokenized_sentences_to_align.txt")
27
+
28
+ self.forward_command = [fastalign_bin, "-i", self.temp_file_path, "-d", "-T", fwd_T, "-m", fwd_m, "-f",
29
+ forward_params_path]
30
+ self.reverse_command = [fastalign_bin, "-i", self.temp_file_path, "-d", "-T", rev_T, "-m", rev_m, "-f",
31
+ reverse_params_path, "r"]
32
+
33
+ self.symmetric_command = [atools_bin, "-i", self.forward_alignment_file_path, "-j",
34
+ self.reverse_alignment_file_path, "-c", "grow-diag-final-and"]
35
+
36
+ def __simplify_alignment_file(self, file):
37
+ with fileinput.FileInput(file, inplace=True, backup='.bak') as f:
38
+ for line in f:
39
+ print(line.split('|||')[2].strip())
40
+
41
+ def __read_err(self, err):
42
+ (T, m) = ('', '')
43
+ for line in open(err):
44
+ # expected target length = source length * N
45
+ if 'expected target length' in line:
46
+ m = line.split()[-1]
47
+ # final tension: N
48
+ elif 'final tension' in line:
49
+ T = line.split()[-1]
50
+ return T, m
51
+
52
+ def align(self, original_sentences, translated_sentences):
53
+ # create temporary file which fastalign will use
54
+ with open(self.temp_file_path, "w") as temp_file:
55
+ for original, translated in zip(original_sentences, translated_sentences):
56
+ temp_file.write(f"{original} ||| {translated}\n")
57
+
58
+ # generate forward alignment
59
+ with open(self.forward_alignment_file_path, 'w') as f_out, open(self.reverse_alignment_file_path, 'w') as r_out:
60
+ fw_process = Popen(self.forward_command, stdout=f_out)
61
+ # generate reverse alignment
62
+ r_process = Popen(self.reverse_command, stdout=r_out)
63
+
64
+ # wait for both to finish
65
+ fw_process.wait()
66
+ r_process.wait()
67
+
68
+ # for some reason the output file contains more information than needed, remove it
69
+ self.__simplify_alignment_file(self.forward_alignment_file_path)
70
+ self.__simplify_alignment_file(self.reverse_alignment_file_path)
71
+
72
+ # generate symmetrical alignment
73
+ process = Popen(self.symmetric_command, stdin=PIPE, stdout=PIPE, stderr=PIPE)
74
+ process.wait()
75
+
76
+ # get final alignments and format them
77
+ alignments_str = process.communicate()[0].decode('utf-8')
78
+ alignments = []
79
+ for line in alignments_str.splitlines():
80
+ alignments.append([(int(i), int(j)) for i, j in [pair.split("-") for pair in line.strip("\n").split(" ")]])
81
+
82
+ return alignments
src/translate_any_doc.py ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import shutil
2
+ import time
3
+ import json
4
+
5
+ import requests
6
+ import os
7
+ from itertools import groupby
8
+ from subprocess import Popen, PIPE
9
+ import re
10
+
11
+ from src.aligner import Aligner
12
+
13
+ import nltk
14
+ import glob
15
+ from nltk.tokenize import sent_tokenize, word_tokenize
16
+
17
+ nltk.download('punkt')
18
+ nltk.download('punkt_tab')
19
+
20
+ ip = "192.168.20.216"
21
+ port = "8000"
22
+
23
+
24
+ def translate(text, ip, port):
25
+ myobj = {
26
+ 'id': '1',
27
+ 'src': text,
28
+ }
29
+ port = str(int(port))
30
+ url = 'http://' + ip + ':' + port + '/translate'
31
+ x = requests.post(url, json=myobj)
32
+ json_response = json.loads(x.text)
33
+ return json_response['tgt']
34
+
35
+
36
+ def doc_to_plain_text(input_file: str, source_lang: str, target_lang: str, tikal_folder: str,
37
+ original_xliff_file_path: str) -> str:
38
+ """
39
+ Given a document, this function generates an xliff file and then a plain text file with the text contents
40
+ while keeping style and formatting using tags like <g id=1> </g>
41
+
42
+ Parameters:
43
+ input_file: Path to document to process
44
+ source_lang: Source language of the document
45
+ target_lang: Target language of the document
46
+ tikal_folder: Folder where tikal.sh is located
47
+ original_xliff_file_path: Path to xliff file to generate, which will be use later
48
+
49
+ Returns:
50
+ string: Path to plain text file
51
+ """
52
+
53
+ tikal_xliff_command = [os.path.join(tikal_folder, "tikal.sh"), "-x", input_file, "-nocopy", "-sl", source_lang,
54
+ "-tl", target_lang]
55
+ Popen(tikal_xliff_command).wait()
56
+
57
+ tikal_moses_command = [os.path.join(tikal_folder, "tikal.sh"), "-xm", original_xliff_file_path, "-sl", source_lang,
58
+ "-tl", target_lang]
59
+ Popen(tikal_moses_command).wait()
60
+
61
+ return os.path.join(original_xliff_file_path + f".{source_lang}")
62
+
63
+
64
+ def get_runs_from_paragraph(text: str, paragraph_index: int) -> list[dict[str, str]]:
65
+ """
66
+ Given some text that may or may not contain some chunks tagged with something like <g id=1> </g>, extract each
67
+ of the runs of text and convert them into dictionaries to keep this information
68
+
69
+ Parameters:
70
+ text: Text to process
71
+ paragraph_index: Index of the paragraph in the file
72
+
73
+ Returns:
74
+ list[dict]: Where each element is a run with text, tag id (if any, if not None) and paragraph_index
75
+ """
76
+
77
+ pattern = r'<g id="(\d+)">(.*?)</g>'
78
+ chunks = []
79
+ last_index = 0
80
+
81
+ for match in re.finditer(pattern, text):
82
+ start, end = match.span()
83
+ id_ = match.group(1)
84
+ content = match.group(2)
85
+
86
+ # Add plain text before the tag, if any
87
+ if start > last_index:
88
+ plain_text = text[last_index:start]
89
+ chunks.append({"text": plain_text, "id": None, "paragraph_index": paragraph_index})
90
+
91
+ # Add tagged content
92
+ if content != " ":
93
+ chunks.append({"text": content, "id": id_, "paragraph_index": paragraph_index})
94
+ last_index = end
95
+
96
+ # Add any remaining plain text after the last tag
97
+ if last_index < len(text):
98
+ chunks.append({"text": text[last_index:], "id": None, "paragraph_index": paragraph_index})
99
+
100
+ return chunks
101
+
102
+
103
+ def tokenize_with_runs(runs: list[dict[str, str]], detokenizer) -> list[list[dict[str, str]]]:
104
+ """
105
+ Given a list of runs, we need to tokenize them by sentence and token while keeping the style of each token according
106
+ to its original run
107
+
108
+ Parameters:
109
+ runs: List of runs, where each item is a chunk of text (possibly various tokens) and some style/formatting information
110
+ detokenizer: Detokenizer object to merge tokens back together
111
+
112
+ Returns:
113
+ list[list[dict]]: A list of tokenized sentences where each token contains the style of its original run
114
+ """
115
+ text_paragraph = detokenizer.detokenize([run["text"] for run in runs])
116
+ sentences = sent_tokenize(text_paragraph)
117
+ tokenized_sentences = [word_tokenize(sentence) for sentence in sentences]
118
+
119
+ tokens_with_style = []
120
+ for run in runs:
121
+ tokens = word_tokenize(run["text"])
122
+ for token in tokens:
123
+ tokens_with_style.append(run.copy())
124
+ tokens_with_style[-1]["text"] = token
125
+
126
+ token_index = 0
127
+ tokenized_sentences_with_style = []
128
+ for sentence in tokenized_sentences:
129
+ sentence_with_style = []
130
+ for word in sentence:
131
+ if word == tokens_with_style[token_index]["text"]:
132
+ sentence_with_style.append(tokens_with_style[token_index])
133
+ token_index += 1
134
+ else:
135
+ if word.startswith(tokens_with_style[token_index]["text"]):
136
+ # this token might be split into several runs
137
+ word_left = word
138
+
139
+ while word_left:
140
+ sentence_with_style.append(tokens_with_style[token_index])
141
+ word_left = word_left.removeprefix(tokens_with_style[token_index]["text"])
142
+ token_index += 1
143
+ else:
144
+ raise "Something unexpected happened I'm afraid"
145
+ tokenized_sentences_with_style.append(sentence_with_style)
146
+ return tokenized_sentences_with_style
147
+
148
+
149
+ def generate_alignments(original_paragraphs_with_runs: list[list[dict[str, str]]],
150
+ translated_paragraphs: list[str], aligner, temp_folder: str,
151
+ detokenizer) -> list[list[dict[str, str]]]:
152
+ """
153
+ Given some original paragraphs with style and formatting and its translation without formatting, try to match
154
+ the translated text formatting with the original. Since we only want to run fastalign once we have to temporarily
155
+ forget about paragraphs and work only in sentences, so the output is a list of sentences but with information about
156
+ from which paragraph that sentence came from
157
+
158
+ Parameters:
159
+ original_paragraphs_with_runs: Original text split into paragraphs and runs
160
+ translated_paragraphs: Translated text, split into paragraphs
161
+ aligner: Object of the aligner class, uses fastalign
162
+ temp_folder: Path to folder where to put all the intermediate files
163
+ detokenizer: Detokenizer object to merge tokens back together
164
+
165
+ Returns:
166
+ list[list[dict]]: A list of tokenized sentences where each translated token contains the style of the associated
167
+ original token
168
+ """
169
+ # clean temp folder
170
+ for f in glob.glob(os.path.join(temp_folder, "*align*")):
171
+ os.remove(f)
172
+
173
+ # tokenize the original text by sentence and words while keeping the style
174
+ original_tokenized_sentences_with_style = [tokenize_with_runs(runs, detokenizer) for runs in
175
+ original_paragraphs_with_runs]
176
+
177
+ # flatten all the runs so we can align with just one call instead of one per paragraph
178
+ original_tokenized_sentences_with_style = [item for sublist in original_tokenized_sentences_with_style for item in
179
+ sublist]
180
+
181
+ # tokenize the translated text by sentence and word
182
+ translated_tokenized_sentences = [word_tokenize(sentence) for
183
+ translated_paragraph in translated_paragraphs for sentence in
184
+ sent_tokenize(translated_paragraph)]
185
+
186
+ assert len(translated_tokenized_sentences) == len(
187
+ original_tokenized_sentences_with_style), "The original and translated texts contain a different number of sentence, likely due to a translation error"
188
+
189
+ original_sentences = []
190
+ translated_sentences = []
191
+ for original, translated in zip(original_tokenized_sentences_with_style, translated_tokenized_sentences):
192
+ original_sentences.append(' '.join(item['text'] for item in original))
193
+ translated_sentences.append(' '.join(translated))
194
+
195
+ alignments = aligner.align(original_sentences, translated_sentences)
196
+
197
+ # using the alignments generated by fastalign, we need to copy the style of the original token to the translated one
198
+ translated_sentences_with_style = []
199
+ for sentence_idx, sentence_alignments in enumerate(alignments):
200
+
201
+ # reverse the order of the alignments and build a dict with it
202
+ sentence_alignments = {target: source for source, target in sentence_alignments}
203
+
204
+ translated_sentence_with_style: list[dict[str, str]] = []
205
+ for token_idx, translated_token in enumerate(translated_tokenized_sentences[sentence_idx]):
206
+ # fastalign has found a token aligned with the translated one
207
+ if token_idx in sentence_alignments.keys():
208
+ # get the aligned token
209
+ original_idx = sentence_alignments[token_idx]
210
+ new_entry = original_tokenized_sentences_with_style[sentence_idx][original_idx].copy()
211
+ new_entry["text"] = translated_token
212
+ translated_sentence_with_style.append(new_entry)
213
+ else:
214
+ # WARNING this is a test
215
+ # since fastalign doesn't know from which word to reference this token, copy the style of the previous word
216
+ new_entry = translated_sentence_with_style[-1].copy()
217
+ new_entry["text"] = translated_token
218
+ translated_sentence_with_style.append(new_entry)
219
+
220
+ translated_sentences_with_style.append(translated_sentence_with_style)
221
+
222
+ return translated_sentences_with_style
223
+
224
+
225
+ def group_by_style(tokens: list[dict[str, str]], detokenizer) -> list[dict[str, str]]:
226
+ """
227
+ To avoid having issues in the future, we group the contiguous tokens that have the same style. Basically, we
228
+ reconstruct the runs.
229
+
230
+ Parameters:
231
+ tokens: Tokens with style information
232
+ detokenizer: Detokenizer object to merge tokens back together
233
+
234
+ Returns:
235
+ list[dict]: A list of translated runs with format and style
236
+ """
237
+ groups = []
238
+ for key, group in groupby(tokens, key=lambda x: (x["id"], x["paragraph_index"])):
239
+ text = detokenizer.detokenize([item['text'] for item in group])
240
+
241
+ if groups and not text.startswith((",", ";", ":", ".", ")", "!", "?")):
242
+ text = " " + text
243
+
244
+ groups.append({"text": text,
245
+ "id": key[0],
246
+ "paragraph_index": key[1]})
247
+ return groups
248
+
249
+
250
+ def runs_to_plain_text(paragraphs_with_style: dict[str, list[dict[str, str, str]]], out_file_path: str):
251
+ """
252
+ Generate a plain text file restoring the original tag structure like <g id=1> </g>
253
+
254
+ Parameters:
255
+ paragraphs_with_style: Dictionary where each key is the paragraph_index and its contents are a list of runs
256
+ out_file_path: Path to the file where the plain text will be saved
257
+ """
258
+ with open(out_file_path, "w") as out_file:
259
+ for key, paragraph in paragraphs_with_style.items():
260
+ text_paragraph = ""
261
+ for run in paragraph:
262
+ if run["id"]:
263
+ text_paragraph += f'<g id="{run["id"]}">{run["text"]}</g>'
264
+ else:
265
+ text_paragraph += run["text"]
266
+ out_file.write(text_paragraph + "\n")
267
+
268
+
269
+ def translate_document(input_file: str, source_lang: str, target_lang: str,
270
+ aligner: Aligner,
271
+ detokenizer,
272
+ ip: str = "192.168.20.216",
273
+ temp_folder: str = "tmp",
274
+ port: str = "8000",
275
+ tikal_folder: str = "okapi-apps_gtk2-linux-x86_64_1.47.0") -> str:
276
+ input_filename = input_file.split("/")[-1]
277
+ # copy the original file to the temporal folder to avoid common issues with tikal
278
+ temp_input_file = os.path.join(temp_folder, input_filename)
279
+ shutil.copy(input_file, temp_input_file)
280
+
281
+ original_xliff_file = os.path.join(temp_folder, input_filename + ".xlf")
282
+ plain_text_file = doc_to_plain_text(temp_input_file, source_lang, target_lang, tikal_folder, original_xliff_file)
283
+
284
+ # get paragraphs with runs
285
+ paragraphs_with_runs = [get_runs_from_paragraph(line.strip(), idx) for idx, line in
286
+ enumerate(open(plain_text_file).readlines())]
287
+
288
+ # translation = translate(open(original_moses_file).read(), ip, port)
289
+
290
+ # translate using plaintext file
291
+ # translated_paragraphs = []
292
+ # for paragraph in tqdm.tqdm(paragraphs_with_runs, desc="Translating paragraphs..."):
293
+ # paragraph_text = detokenizer.detokenize([run["text"] for run in paragraph])
294
+ # translated_paragraphs.append(translate(paragraph_text, ip, port))
295
+
296
+ translated_paragraphs = ["Catalan",
297
+ "Catalan (official name in Catalonia, the Balearic Islands, Andorra, the city of Alghero and traditional in Northern Catalonia) or Valencian (official name in the Valencian Community and traditional in Carxe) is a Romance language spoken in Catalonia, the Valencian Community (except for some regions and towns in the interior), the Balearic Islands (where it is also called Mallorcan, Menorcan, Ibizan or Formentera depending on the island), Andorra, the Franja de Ponent (in Aragon), the city of Alghero (on the island of Sardinia), Northern Catalonia, Carxe (a small territory of Murcia inhabited by Valencian settlers), and in communities around the world (among which Argentina stands out, with 200,000 speakers).",
298
+ "It has ten million speakers, of whom almost half are native speakers; Its linguistic domain, with an area of 68,730 km² and 13,992,625 inhabitants (2013-2015), includes 1,687 municipal districts. In 2023, it was spoken as a mother tongue by more than four million people (29% of the population of the linguistic territory), of whom 2,924,610 in Catalonia, 1,190,672 in the Valencian Community and 327,384 in the Balearic Islands. Like the other Romance languages, Catalan comes from Vulgar Latin spoken by the Romans who settled in Hispania during ancient times."]
299
+
300
+ # time to align the translation with the original
301
+ print("Generating alignments...")
302
+ start_time = time.time()
303
+ translated_sentences_with_style = generate_alignments(paragraphs_with_runs, translated_paragraphs, aligner,
304
+ temp_folder, detokenizer)
305
+ print(f"Finished alignments in {time.time() - start_time} seconds")
306
+
307
+ # flatten the sentences into a list of tokens
308
+ translated_tokens_with_style = [item for sublist in translated_sentences_with_style for item in sublist]
309
+
310
+ # group the tokens by style/run
311
+ translated_runs_with_style = group_by_style(translated_tokens_with_style, detokenizer)
312
+
313
+ # group the runs by original paragraph
314
+ translated_paragraphs_with_style = dict()
315
+ for item in translated_runs_with_style:
316
+ if item['paragraph_index'] in translated_paragraphs_with_style:
317
+ translated_paragraphs_with_style[item['paragraph_index']].append(item)
318
+ else:
319
+ # first item in the paragraph, remove starting blank space we introduced in group_by_style(), where we
320
+ # didn't know where paragraphs started and ended
321
+ first_item_in_paragraph = item.copy()
322
+ first_item_in_paragraph["text"] = first_item_in_paragraph["text"].lstrip(" ")
323
+ translated_paragraphs_with_style[item['paragraph_index']] = []
324
+ translated_paragraphs_with_style[item['paragraph_index']].append(first_item_in_paragraph)
325
+
326
+ # save to new plain text file
327
+ translated_moses_file = os.path.join(original_xliff_file + f".{target_lang}")
328
+ runs_to_plain_text(translated_paragraphs_with_style, translated_moses_file)
329
+
330
+ # put the translations into the xlf
331
+ tikal_moses_to_xliff_command = [os.path.join(tikal_folder, "tikal.sh"), "-lm", original_xliff_file, "-sl",
332
+ source_lang, "-tl", target_lang, "-from", translated_moses_file, "-totrg",
333
+ "-noalttrans", "-to", original_xliff_file]
334
+ Popen(tikal_moses_to_xliff_command).wait()
335
+
336
+ # merge into a docx again
337
+ tikal_merge_doc_command = [os.path.join(tikal_folder, "tikal.sh"), "-m", original_xliff_file]
338
+ final_process = Popen(tikal_merge_doc_command, stdout=PIPE, stderr=PIPE)
339
+ stdout, stderr = final_process.communicate()
340
+ final_process.wait()
341
+
342
+ # get the path to the output file
343
+ output = stdout.decode('utf-8')
344
+ translated_file_path = re.search(r'(?<=Output:\s)(.*)', output)[0]
345
+
346
+ print("Saved file")
347
+ return translated_file_path
translate_docx.py → src/translate_docx.py RENAMED
@@ -8,17 +8,13 @@ from docx import Document
8
  from docx.text.hyperlink import Hyperlink
9
  from docx.text.run import Run
10
  import nltk
11
- import platform
12
 
13
  nltk.download('punkt')
14
  nltk.download('punkt_tab')
15
 
16
  from nltk.tokenize import sent_tokenize, word_tokenize
17
 
18
- from subprocess import Popen, PIPE
19
-
20
  from itertools import groupby
21
- import fileinput
22
 
23
  ip = "192.168.20.216"
24
  port = "8000"
@@ -36,85 +32,6 @@ def translate(text, ip, port):
36
  return json_response['tgt']
37
 
38
 
39
- # Class to align original and translated sentences
40
- # based on https://github.com/mtuoc/MTUOC-server/blob/main/GetWordAlignments_fast_align.py
41
- class Aligner():
42
- def __init__(self, config_folder, source_lang, target_lang, temp_folder):
43
- forward_params_path = os.path.join(config_folder, f"{source_lang}-{target_lang}.params")
44
- reverse_params_path = os.path.join(config_folder, f"{target_lang}-{source_lang}.params")
45
-
46
- fwd_T, fwd_m = self.__read_err(os.path.join(config_folder, f"{source_lang}-{target_lang}.err"))
47
- rev_T, rev_m = self.__read_err(os.path.join(config_folder, f"{target_lang}-{source_lang}.err"))
48
-
49
- self.forward_alignment_file_path = os.path.join(temp_folder, "forward.align")
50
- self.reverse_alignment_file_path = os.path.join(temp_folder, "reverse.align")
51
-
52
- if platform.system().lower() == "windows":
53
- fastalign_bin = "fast_align.exe"
54
- atools_bin = "atools.exe"
55
- else:
56
- fastalign_bin = "./fast_align"
57
- atools_bin = "./atools"
58
-
59
- self.temp_file_path = os.path.join(temp_folder, "tokenized_sentences.txt")
60
-
61
- self.forward_command = [fastalign_bin, "-i", self.temp_file_path, "-d", "-T", fwd_T, "-m", fwd_m, "-f",
62
- forward_params_path]
63
- self.reverse_command = [fastalign_bin, "-i", self.temp_file_path, "-d", "-T", rev_T, "-m", rev_m, "-f",
64
- reverse_params_path, "r"]
65
-
66
- self.symmetric_command = [atools_bin, "-i", self.forward_alignment_file_path, "-j",
67
- self.reverse_alignment_file_path, "-c", "grow-diag-final-and"]
68
-
69
- def __simplify_alignment_file(self, file):
70
- with fileinput.FileInput(file, inplace=True, backup='.bak') as f:
71
- for line in f:
72
- print(line.split('|||')[2].strip())
73
-
74
- def __read_err(self, err):
75
- (T, m) = ('', '')
76
- for line in open(err):
77
- # expected target length = source length * N
78
- if 'expected target length' in line:
79
- m = line.split()[-1]
80
- # final tension: N
81
- elif 'final tension' in line:
82
- T = line.split()[-1]
83
- return T, m
84
-
85
- def align(self, original_sentences, translated_sentences):
86
- # create temporary file which fastalign will use
87
- with open(self.temp_file_path, "w") as temp_file:
88
- for original, translated in zip(original_sentences, translated_sentences):
89
- temp_file.write(f"{original} ||| {translated}\n")
90
-
91
- # generate forward alignment
92
- with open(self.forward_alignment_file_path, 'w') as f_out, open(self.reverse_alignment_file_path, 'w') as r_out:
93
- fw_process = Popen(self.forward_command, stdout=f_out)
94
- # generate reverse alignment
95
- r_process = Popen(self.reverse_command, stdout=r_out)
96
-
97
- # wait for both to finish
98
- fw_process.wait()
99
- r_process.wait()
100
-
101
- # for some reason the output file contains more information than needed, remove it
102
- self.__simplify_alignment_file(self.forward_alignment_file_path)
103
- self.__simplify_alignment_file(self.reverse_alignment_file_path)
104
-
105
- # generate symmetrical alignment
106
- process = Popen(self.symmetric_command, stdin=PIPE, stdout=PIPE, stderr=PIPE)
107
- process.wait()
108
-
109
- # get final alignments and format them
110
- alignments_str = process.communicate()[0].decode('utf-8')
111
- alignments = []
112
- for line in alignments_str.splitlines():
113
- alignments.append([(int(i), int(j)) for i, j in [pair.split("-") for pair in line.strip("\n").split(" ")]])
114
-
115
- return alignments
116
-
117
-
118
  # Function to extract paragraphs with their runs
119
  def extract_paragraphs_with_runs(doc):
120
  paragraphs_with_runs = []
@@ -200,6 +117,10 @@ def generate_alignments(original_paragraphs_with_runs, translated_paragraphs, al
200
  translated_tokenized_sentences = [word_tokenize(sentence) for
201
  translated_paragraph in translated_paragraphs for sentence in
202
  sent_tokenize(translated_paragraph)]
 
 
 
 
203
  original_sentences = []
204
  translated_sentences = []
205
  for original, translated in zip(original_tokenized_sentences_with_style, translated_tokenized_sentences):
 
8
  from docx.text.hyperlink import Hyperlink
9
  from docx.text.run import Run
10
  import nltk
 
11
 
12
  nltk.download('punkt')
13
  nltk.download('punkt_tab')
14
 
15
  from nltk.tokenize import sent_tokenize, word_tokenize
16
 
 
 
17
  from itertools import groupby
 
18
 
19
  ip = "192.168.20.216"
20
  port = "8000"
 
32
  return json_response['tgt']
33
 
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  # Function to extract paragraphs with their runs
36
  def extract_paragraphs_with_runs(doc):
37
  paragraphs_with_runs = []
 
117
  translated_tokenized_sentences = [word_tokenize(sentence) for
118
  translated_paragraph in translated_paragraphs for sentence in
119
  sent_tokenize(translated_paragraph)]
120
+
121
+ assert len(translated_tokenized_sentences) == len(
122
+ original_tokenized_sentences_with_style), "The original and translated texts contain a different number of sentence, likely due to a translation error"
123
+
124
  original_sentences = []
125
  translated_sentences = []
126
  for original, translated in zip(original_tokenized_sentences_with_style, translated_tokenized_sentences):