Spaces:
Running
on
Zero
Running
on
Zero
Update app_v3.py
Browse files
app_v3.py
CHANGED
@@ -47,6 +47,21 @@ pipe = FluxControlNetPipeline.from_pretrained(
|
|
47 |
)
|
48 |
pipe.to("cuda")
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
@spaces.GPU(duration=10)
|
51 |
@torch.no_grad()
|
52 |
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
|
@@ -228,4 +243,4 @@ with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as demo:
|
|
228 |
outputs=[prompt]
|
229 |
)
|
230 |
|
231 |
-
demo.launch(
|
|
|
47 |
)
|
48 |
pipe.to("cuda")
|
49 |
|
50 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
51 |
+
# For FLUX models, compiling VAE decode can also be beneficial if needed, though UNet is primary.
|
52 |
+
# pipe.vae.decode = torch.compile(pipe.vae.decode, mode="reduce-overhead", fullgraph=True) # Uncomment if VAE compile helps
|
53 |
+
|
54 |
+
# 2. Memory Efficient Attention (xFormers): Reduces memory usage and improves speed
|
55 |
+
# Requires xformers library installation. Beneficial even with high VRAM.
|
56 |
+
try:
|
57 |
+
pipe.enable_xformers_memory_efficient_attention()
|
58 |
+
except Exception as e:
|
59 |
+
print(f"XFormers not available, skipping memory efficient attention: {e}")
|
60 |
+
|
61 |
+
# 3. Attention Slicing: Recommended for FLUX models and high-resolution images,
|
62 |
+
# even with ample VRAM, as it can sometimes help with very large tensors.
|
63 |
+
pipe.enable_attention_slicing()
|
64 |
+
|
65 |
@spaces.GPU(duration=10)
|
66 |
@torch.no_grad()
|
67 |
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
|
|
|
243 |
outputs=[prompt]
|
244 |
)
|
245 |
|
246 |
+
demo.launch(show_error=True)
|