DarwinAnim8or commited on
Commit
7d31ef5
·
verified ·
1 Parent(s): 0376fe4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -1
app.py CHANGED
@@ -1,3 +1,39 @@
1
  import gradio as gr
 
 
2
 
3
- gr.load("models/KoalaAI/Text-Moderation").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
 
5
+ # Load pre-trained model and tokenizer
6
+ model_name = "KoalaAI/Text-Moderation"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
+
10
+ # Get labels from the model's config
11
+ labels = list(model.config.id2label.values())
12
+
13
+ def classify_text(text):
14
+ # Tokenize input
15
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
16
+
17
+ # Get prediction
18
+ with torch.no_grad():
19
+ outputs = model(**inputs)
20
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
21
+
22
+ # Format results
23
+ results = {labels[i]: float(predictions[0][i]) for i in range(len(labels))}
24
+
25
+ return results
26
+
27
+ # Create Gradio interface
28
+ demo = gr.Interface(
29
+ fn=classify_text,
30
+ inputs=gr.Textbox(placeholder="Enter text to classify...", lines=5),
31
+ outputs=gr.Label(num_top_classes=len(labels)),
32
+ title="KoalaAI - Text-Moderation Demo",
33
+ description="This model determines whether or not there is potentially harmful content in a given text",
34
+ theme=gr.themes.Soft()
35
+ )
36
+
37
+ # Launch app
38
+ if __name__ == "__main__":
39
+ demo.launch()