DarwinAnim8or's picture
Update app.py
fcb5ec6 verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load pre-trained model and tokenizer
model_name = "KoalaAI/Text-Moderation"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Get labels from the model's config
labels = list(model.config.id2label.values())
def classify_text(text):
# Tokenize input
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
# Get prediction
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Format results
results = {labels[i]: float(predictions[0][i]) for i in range(len(labels))}
return results
# Create Gradio interface
custom_theme = gr.themes.Soft(
primary_hue=gr.themes.colors.green,
secondary_hue=gr.themes.colors.emerald,
)
demo = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(placeholder="Enter text to classify...", lines=5),
outputs=gr.Label(num_top_classes=len(labels)),
title="KoalaAI - Text-Moderation Demo",
description="This model determines whether or not there is potentially harmful content in a given text",
theme=custom_theme
)
# Launch app
if __name__ == "__main__":
demo.launch()