from speechbrain.pretrained import SpectralMaskEnhancement import torchaudio model = SpectralMaskEnhancement.from_hparams(source="speechbrain/metricgan-plus-voicebank", ) from speechbrain.pretrained import SpectralMaskEnhancement import torchaudio import torch model = SpectralMaskEnhancement.from_hparams(source="speechbrain/metricgan-plus-voicebank") def remove_noise(input_path, output_path): enhanced = model.enhance_file(input_path) waveform, sample_rate = enhanced if waveform.dim() == 0: raise ValueError(f"Enhanced waveform is empty for file: {input_path}") elif waveform.dim() == 1: waveform = waveform.unsqueeze(0) torchaudio.save(output_path, waveform, sample_rate)