File size: 8,387 Bytes
f5790af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import wget
import json
from tqdm import tqdm

GPT2_FOLDER = "./GPT2"
MODEL_FILE = "gpt2-pytorch_model.bin"
ENCODER_FILE = "encoder.json"
VOCAB_FILE = "vocab.bpe"
MODEL_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin"
ENCODER_URL = "https://raw.githubusercontent.com/graykode/gpt-2-Pytorch/refs/heads/master/GPT2/GPT2/encoder.json"
VOCAB_URL = "https://raw.githubusercontent.com/graykode/gpt-2-Pytorch/refs/heads/master/GPT2/GPT2/vocab.bpe"
MAX_LENGTH = 1024
END_OF_TEXT_TOKEN = "<|endoftext|>"

def ensure_gpt2_files_exist():
    if not os.path.exists(os.path.join(GPT2_FOLDER, MODEL_FILE)):
        wget.download(MODEL_URL, out=os.path.join(GPT2_FOLDER, MODEL_FILE))
    if not os.path.exists(os.path.join(GPT2_FOLDER, ENCODER_FILE)):
        wget.download(ENCODER_URL, out=os.path.join(GPT2_FOLDER, ENCODER_FILE))
    if not os.path.exists(os.path.join(GPT2_FOLDER, VOCAB_FILE)):
        wget.download(VOCAB_URL, out=os.path.join(GPT2_FOLDER, VOCAB_FILE))

class GPT2Config:
    def __init__(self, vocab_size_or_config_json_file=50257, n_positions=MAX_LENGTH, n_ctx=MAX_LENGTH, n_embd=768, n_layer=12, n_head=12, layer_norm_epsilon=1e-5, initializer_range=0.02):
        self.vocab_size = vocab_size_or_config_json_file
        self.n_ctx = n_ctx
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range

class GPT2LMHeadModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transformer = GPT2Model(config)
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None):
        lm_logits, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
        return lm_logits, presents

class GPT2Model(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.n_layer = config.n_layer
        self.n_embd = config.n_embd
        self.n_vocab = config.vocab_size
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None):
        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
            past_length = past[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        presents = []
        for block, layer_past in zip(self.h, past):
            hidden_states, present = block(hidden_states, layer_past)
            presents.append(present)
        hidden_states = self.ln_f(hidden_states)
        output_shape = input_shape + (hidden_states.size(-1),)
        return hidden_states.view(*output_shape), presents

class GPT2LMHead(nn.Module):
    def __init__(self, model_embeddings_weights, config):
        super().__init__()
        self.n_embd = config.n_embd
        self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.decoder.weight = model_embeddings_weights

    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
        return lm_logits

class Block(nn.Module):
    def __init__(self, n_ctx, config, scale=False):
        super().__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.attn = Attention(nx, n_ctx, config, scale)
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

    def forward(self, x, layer_past=None):
        a, present = self.attn(self.ln_1(x), layer_past=layer_past)
        x = x + a
        m = self.mlp(self.ln_2(x))
        x = x + m
        return x, present

class Attention(nn.Module):
    def __init__(self, nx, n_ctx, config, scale=False):
        super().__init__()
        n_state = nx
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns - nd:ns, :ns]
        w = w * b - 1e-10 * (1 - b)
        w = nn.Softmax(dim=-1)(w)
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x, layer_past=None):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        if layer_past is not None:
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]
            key = torch.cat((past_key, key), dim=-1)
            value = torch.cat((past_value, value), dim=-2)
        present = torch.stack((key.transpose(-2, -1), value))
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
        return a, present

class MLP(nn.Module):
    def __init__(self, n_state, config):
        super().__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return h2

class Conv1D(nn.Module):
    def __init__(self, nf, nx):
        super().__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = Parameter(w)
        self.bias = Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x

class LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x + self.bias

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))