Spaces:
Running
Running
import os, uuid | |
from flask import jsonify, send_file, request | |
from main import * | |
import torch, io | |
from skimage import img_as_ubyte | |
import imageio, base64 | |
def text_to_video_func(prompt, output_path="output_video.mp4"): | |
if text_to_video_model is None: return {"error": "Text-to-Video model not initialized."} | |
video_frames_list = text_to_video_model(prompt) | |
if video_frames_list and hasattr(video_frames_list, 'frames'): export_to_video_pure(video_frames_list.frames, output_video=output_path); return output_path | |
return {"error": "Video generation failed."} | |
def export_to_video_pure(video_frames, output_video="output_video.mp4", fps=25): | |
writer = imageio.get_writer(output_video, fps=fps) | |
for frame in video_frames: writer.append_data(img_as_ubyte(frame)) | |
writer.close() | |
def text_to_video_api(prompt): | |
output_data = text_to_video_func(prompt) | |
if "error" in output_data: return {"error": output_data["error"]} | |
output_file = output_data; | |
with open(output_file, 'rb') as f: video_content = f.read() | |
video_base64 = base64.b64encode(video_content).decode('utf-8'); os.remove(output_file); return {"video_base64": video_base64, "mimetype": "video/mp4"} | |