Hhhh / models.py
Kfjjdjdjdhdhd's picture
Upload 26 files
7b74407 verified
raw
history blame contribute delete
7.31 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from configs import MusicGenConfig
from extensions import CodeGenBlock
from TTS.tts.layers.xtts.transformer import XTransformerEncoder, XTransformerDecoder
from TTS.tts.layers.xtts.flow import VitsFlowModules
from TTS.tts.layers.xtts.tokenizer import VoiceBPE
class SentimentClassifierModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
self.lstm = nn.LSTM(config.d_model, config.d_model, batch_first=True, bidirectional=True)
self.fc = nn.Linear(config.d_model * 2, 3)
def forward(self, input_ids):
embedded = self.embedding(input_ids)
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths=[input_ids.size(1)]*input_ids.size(0), batch_first=True, enforce_sorted=False)
packed_output, _ = self.lstm(packed_embedded)
output, _ = nn.utils.rnn.pad_packed_sequence(packed_output, batch_first=True)
pooled = output[:, -1, :]; logits = self.fc(pooled); return logits
class STTModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.conv1 = nn.Conv1d(1, 16, kernel_size=3, stride=2, padding=1)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2)
self.conv2 = nn.Conv1d(16, 32, kernel_size=3, padding=1)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2)
self.lstm = nn.LSTM(32 * (config.max_position_embeddings // 8), 128, batch_first=True, bidirectional=True)
self.fc = nn.Linear(128 * 2, config.vocab_size)
def forward(self, audio_data):
x = self.pool1(self.relu1(self.conv1(audio_data.unsqueeze(1))))
x = self.pool2(self.relu2(self.conv2(x))); x = x.transpose(1, 2).contiguous(); x = x.view(x.size(0), -1, x.size(2))
packed_output = nn.utils.rnn.pack_padded_sequence(embedded, lengths=[x.size(1)]*x.size(0), batch_first=True, enforce_sorted=False); packed_output, _ = self.lstm(packed_output)
output, _ = nn.utils.rnn.pad_packed_sequence(packed_output, batch_first=True); logits = self.fc(output); return logits
class TTSModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
self.lstm = nn.LSTM(config.d_model, config.d_model, batch_first=True, bidirectional=True)
self.fc = nn.Linear(config.d_model * 2, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_ids):
embedded = self.embedding(input_ids); packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths=[input_ids.size(1)]*input_ids.size(0), batch_first=True, enforce_sorted=False)
packed_output, _ = self.lstm(packed_embedded); output, _ = nn.utils.rnn.pad_packed_sequence(packed_output, batch_first=True); logits = self.fc(output); audio = self.sigmoid(logits); return audio
class MusicGenModel(nn.Module):
def __init__(self, config: MusicGenConfig):
super().__init__()
self.config = config
self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.transformer_layers = nn.ModuleList([CodeGenBlock(config) for _ in range(config.num_hidden_layers)])
self.fc_out = nn.Linear(config.hidden_size, config.vocab_size)
def forward(self, input_ids):
embedded_tokens = self.embedding(input_ids); hidden_states = embedded_tokens
for layer in self.transformer_layers: hidden_states = layer(hidden_states)
logits = self.fc_out(hidden_states); return logits
def sample(self, attributes, sample_rate, duration):
input_tokens = torch.randint(0, self.config.vocab_size, (1, 1), dtype=torch.long).to(device); audio_output = []; num_steps = int(duration * sample_rate / 1024)
for _ in tqdm(range(num_steps), desc="Generating music"): logits = self.forward(input_tokens); predicted_token = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True); audio_output.append(predicted_token.cpu()); input_tokens = torch.cat((input_tokens, predicted_token), dim=1)
audio_output = torch.cat(audio_output, dim=1).float(); return audio_output
class XTTSModelClass(nn.Module):
def __init__(self, config):
super().__init__()
self.xtts = XTTSModel(config, num_speakers=1024, num_languages=25)
def forward(self, text_tokens, text_lengths, speaker_ids, language_ids, voice_samples, voice_sample_lengths):
return self.xtts.forward(text_tokens, text_lengths, speaker_ids, language_ids, voice_samples, voice_sample_lengths)
def inference(self, text, language_id, speaker_id, voice_sample, temperature=0.7, length_penalty=1.0):
return self.xtts.inference(text, language_id, speaker_id, voice_sample, temperature, length_penalty)
class XTTSModel(nn.Module):
def __init__(self, config, num_speakers, num_languages):
super().__init__()
self.config = config
self.num_speakers = num_speakers
self.num_languages = num_languages
self.encoder = XTransformerEncoder(**config.encoder_config)
self.decoder = XTransformerDecoder(**config.decoder_config)
self.flow_modules = VitsFlowModules(**config.flow_config)
self.voice_tokenizer = VoiceBPE(vocab_path=config.voice_tokenizer_config.vocab_path, vocab_size=config.voice_tokenizer_config.vocab_size)
self.language_embedding = nn.Embedding(num_languages, config.embedding_dim)
self.speaker_embedding = nn.Embedding(num_speakers, config.embedding_dim)
self.text_embedding = nn.Embedding(config.num_chars, config.embedding_dim)
def forward(self, text_tokens, text_lengths, speaker_ids, language_ids, voice_samples, voice_sample_lengths):
lang_embed = self.language_embedding(language_ids); spk_embed = self.speaker_embedding(speaker_ids); text_embed = self.text_embedding(text_tokens)
encoder_outputs, _ = self.encoder(text_embed, text_lengths, lang_embed + spk_embed); mel_outputs, _ = self.decoder(encoder_outputs, lang_embed + spk_embed, voice_samples); return mel_outputs, None
def inference(self, text, language_id, speaker_id, voice_sample, temperature=0.7, length_penalty=1.0):
language_ids = torch.tensor([language_id], dtype=torch.long).to(device); speaker_ids = torch.tensor([speaker_id], dtype=torch.long).to(device)
text_tokens = self.voice_tokenizer.text_to_ids(text).to(device); text_lengths = torch.tensor([text_tokens.shape[0]], dtype=torch.long).to(device); voice_sample_lengths = torch.tensor([voice_sample.shape[0]], dtype=torch.long).to(device)
lang_embed = self.language_embedding(language_ids); spk_embed = self.speaker_embedding(speaker_ids); text_embed = self.text_embedding(text_tokens)
encoder_outputs, _ = self.encoder(text_embed, text_lengths, lang_embed + spk_embed); mel_outputs, _ = self.decoder.inference(encoder_outputs, lang_embed + spk_embed, voice_sample, temperature=temperature, length_penalty=length_penalty)
return mel_outputs