Spaces:
Running
Running
import threading, queue, time, os, nltk, re, json | |
from flask import Flask | |
from flask_cors import CORS | |
from api import * | |
from extensions import * | |
from constants import * | |
from configs import * | |
from tokenxxx import * | |
from models import * | |
from model_loader import * | |
from utils import * | |
from background_tasks import * | |
from text_generation import * | |
from sadtalker_utils import * | |
state_dict, enc, config, model_gpt2, device, news_clf, tfidf_vectorizer, text_queue, categories, background_threads, feedback_queue, reasoning_queue, seen_responses, dialogue_history, vocabulary, word_to_index, index_to_word, translation_model, sp, codegen_model, codegen_tokenizer, codegen_vocabulary, codegen_index_to_word, codegen_word_to_index, summarization_model, summarization_vocabulary, summarization_word_to_index, summarization_index_to_word, sadtalker_instance, imagegen_model, image_to_3d_model, text_to_video_model, stream_type, sentiment_model, stt_model, tts_model, musicgen_model, xtts_model = None, None, None, None, torch.device("cuda" if torch.cuda.is_available() else "cpu"), None, None, queue.Queue(), None, [], queue.Queue(), queue.Queue(), set(), [], set(), {}, [], None, None, None, None, None, None, set(), {}, [], None, None, None, None, "text", None, None, None, None, None | |
def load_models(): | |
global model_gpt2, enc, translation_model, codegen_model, codegen_tokenizer, summarization_model, imagegen_model, image_to_3d_model, text_to_video_model, sadtalker_instance, sentiment_model, stt_model, tts_model, musicgen_model, xtts_model | |
model_gpt2, enc = initialize_gpt2_model(GPT2_FOLDER, {MODEL_FILE: MODEL_URL, ENCODER_FILE: ENCODER_URL, VOCAB_FILE: VOCAB_URL, CONFIG_FILE: GPT2CONFHG}) | |
translation_model = initialize_translation_model(TRANSLATION_FOLDER, TRANSLATION_MODEL_FILES_URLS) | |
codegen_model, codegen_tokenizer, _, _, _ = initialize_codegen_model(CODEGEN_FOLDER, CODEGEN_FILES_URLS) | |
summarization_model, _, _, _ = initialize_summarization_model(SUMMARIZATION_FOLDER, SUMMARIZATION_FILES_URLS) | |
imagegen_model = initialize_imagegen_model(IMAGEGEN_FOLDER, IMAGEGEN_FILES_URLS) | |
image_to_3d_model = initialize_image_to_3d_model(IMAGE_TO_3D_FOLDER, IMAGE_TO_3D_FILES_URLS) | |
text_to_video_model = initialize_text_to_video_model(TEXT_TO_VIDEO_FOLDER, TEXT_TO_VIDEO_FILES_URLS) | |
sentiment_model = initialize_sentiment_model(SENTIMENT_FOLDER, SENTIMENT_FILES_URLS) | |
stt_model = initialize_stt_model(STT_FOLDER, STT_FILES_URLS) | |
tts_model = initialize_tts_model(TTS_FOLDER, TTS_FILES_URLS) | |
musicgen_model = initialize_musicgen_model(MUSICGEN_FOLDER, MUSICGEN_FILES_URLS) | |
xtts_model = initialize_xtts_model(XTTS_FOLDER, XTTS_FILES_URLS) | |
sadtalker_instance = SadTalker(checkpoint_path='./checkpoints', config_path='./src/config') | |
if __name__ == "__main__": | |
nltk.download('punkt') | |
load_models() | |
categories = ['Category1', 'Category2', 'Category3', 'Category4', 'Category5'] | |
import background_tasks | |
background_tasks.categories = categories; background_tasks.text_queue = text_queue; background_tasks.reasoning_queue = reasoning_queue | |
background_threads.append(threading.Thread(target=generate_and_queue_text, args=('en',), daemon=True)); background_threads.append(threading.Thread(target=generate_and_queue_text, args=('es',), daemon=True)) | |
background_threads.append(threading.Thread(target=background_training, daemon=True)); background_threads.append(threading.Thread(target=background_reasoning_queue, daemon=True)) | |
for thread in background_threads: thread.start() | |
app.run(host='0.0.0.0', port=7860) | |