Hhhh / tokenxxx.py
Hjgugugjhuhjggg's picture
Upload 28 files
e83e49f verified
raw
history blame
5.55 kB
import json
import re
import unicodedata
from functools import lru_cache
import wget
import os
from constants import *
import nltk
@lru_cache()
def bytes_to_unicode():
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class Encoder:
def __init__(self, encoder, bpe_merges, errors='replace', tokenize=None):
self.encoder = encoder
self.decoder = {v:k for k,v in self.encoder.items()}
self.errors = errors
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
if tokenize is None:
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\w+| ?[^\s\w]+|\s+(?!\S)|\s+""", re.UNICODE)
self.tokenize = lambda text: re.findall(self.pat, text)
else:
self.tokenize = tokenize
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except ValueError:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
normalized_text = unicodedata.normalize('NFKC', text)
normalized_text = ''.join(c for c in normalized_text if c.isascii() and c != '\t')
normalized_text = ''.join(c for c in normalized_text if not unicodedata.category(c).startswith('C'))
for token in self.tokenize(normalized_text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8', errors='ignore'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors='replace')
decoded_text = text.replace(" .", ".").replace(" ,", ",").replace(" '", "'").replace(" ?", "?").replace(" !", "!").replace(" :", ":").replace('\n', '<br>')
sentences = nltk.sent_tokenize(decoded_text)
return ' '.join(sentences).replace("<br>", "<br>\n")
def get_encoder_gpt2():
encoder_path = os.path.join(GPT2_FOLDER, ENCODER_FILE)
vocab_path = os.path.join(GPT2_FOLDER, VOCAB_FILE)
if not os.path.exists(GPT2_FOLDER):
os.makedirs(GPT2_FOLDER)
if not os.path.exists(encoder_path):
wget.download(ENCODER_URL, out=encoder_path)
if not os.path.exists(vocab_path):
wget.download(VOCAB_URL, out=vocab_path)
with open(encoder_path, 'r') as f:
encoder = json.load(f)
with open(vocab_path, 'r', encoding="utf-8") as f:
bpe_data = f.read()
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
encoder_obj = Encoder(encoder=encoder, bpe_merges=bpe_merges)
encoder_obj.encoder[END_OF_TEXT_TOKEN] = len(encoder_obj.encoder)
encoder_obj.decoder[len(encoder_obj.decoder)] = END_OF_TEXT_TOKEN
return encoder_obj
def get_codegen_tokenizer_pure(vocab_file, merges_file):
vocab = json.load(open(vocab_file))
merges = open(merges_file, 'r', encoding="utf-8").read().split('\n')[1:-1]
bpe_merges = [tuple(m.split()) for m in merges]
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
tokenizer_regex = re.compile(r'''<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''')
tokenize = lambda text: re.findall(tokenizer_regex, text)
encoder_obj = Encoder(
encoder=vocab,
bpe_merges=bpe_merges,
byte_encoder=byte_encoder,
byte_decoder=byte_decoder,
tokenize=tokenize
)
return encoder_obj
def codegen_tokenize(text, tokenizer):
return tokenizer.encode(text)
def codegen_decode(tokens, tokenizer):
return tokenizer.decode(tokens)