Spaces:
Running
Running
import json | |
import re | |
import unicodedata | |
from functools import lru_cache | |
import wget | |
import os | |
from constants import * | |
import nltk | |
def bytes_to_unicode(): | |
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8 + n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
def get_pairs(word): | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
class Encoder: | |
def __init__(self, encoder, bpe_merges, errors='replace', tokenize=None): | |
self.encoder = encoder | |
self.decoder = {v:k for k,v in self.encoder.items()} | |
self.errors = errors | |
self.byte_encoder = bytes_to_unicode() | |
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()} | |
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) | |
self.cache = {} | |
if tokenize is None: | |
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\w+| ?[^\s\w]+|\s+(?!\S)|\s+""", re.UNICODE) | |
self.tokenize = lambda text: re.findall(self.pat, text) | |
else: | |
self.tokenize = tokenize | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token | |
while True: | |
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
new_word.extend(word[i:j]) | |
i = j | |
except ValueError: | |
new_word.extend(word[i:]) | |
break | |
if word[i] == first and i < len(word)-1 and word[i+1] == second: | |
new_word.append(first+second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = ' '.join(word) | |
self.cache[token] = word | |
return word | |
def encode(self, text): | |
bpe_tokens = [] | |
normalized_text = unicodedata.normalize('NFKC', text) | |
normalized_text = ''.join(c for c in normalized_text if c.isascii() and c != '\t') | |
normalized_text = ''.join(c for c in normalized_text if not unicodedata.category(c).startswith('C')) | |
for token in self.tokenize(normalized_text): | |
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8', errors='ignore')) | |
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) | |
return bpe_tokens | |
def decode(self, tokens): | |
text = ''.join([self.decoder[token] for token in tokens]) | |
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors='replace') | |
decoded_text = text.replace(" .", ".").replace(" ,", ",").replace(" '", "'").replace(" ?", "?").replace(" !", "!").replace(" :", ":").replace('\n', '<br>') | |
sentences = nltk.sent_tokenize(decoded_text) | |
return ' '.join(sentences).replace("<br>", "<br>\n") | |
def get_encoder_gpt2(): | |
encoder_path = os.path.join(GPT2_FOLDER, ENCODER_FILE) | |
vocab_path = os.path.join(GPT2_FOLDER, VOCAB_FILE) | |
if not os.path.exists(GPT2_FOLDER): | |
os.makedirs(GPT2_FOLDER) | |
if not os.path.exists(encoder_path): | |
wget.download(ENCODER_URL, out=encoder_path) | |
if not os.path.exists(vocab_path): | |
wget.download(VOCAB_URL, out=vocab_path) | |
with open(encoder_path, 'r') as f: | |
encoder = json.load(f) | |
with open(vocab_path, 'r', encoding="utf-8") as f: | |
bpe_data = f.read() | |
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]] | |
encoder_obj = Encoder(encoder=encoder, bpe_merges=bpe_merges) | |
encoder_obj.encoder[END_OF_TEXT_TOKEN] = len(encoder_obj.encoder) | |
encoder_obj.decoder[len(encoder_obj.decoder)] = END_OF_TEXT_TOKEN | |
return encoder_obj | |
def get_codegen_tokenizer_pure(vocab_file, merges_file): | |
vocab = json.load(open(vocab_file)) | |
merges = open(merges_file, 'r', encoding="utf-8").read().split('\n')[1:-1] | |
bpe_merges = [tuple(m.split()) for m in merges] | |
byte_encoder = bytes_to_unicode() | |
byte_decoder = {v: k for k, v in byte_encoder.items()} | |
tokenizer_regex = re.compile(r'''<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''') | |
tokenize = lambda text: re.findall(tokenizer_regex, text) | |
encoder_obj = Encoder( | |
encoder=vocab, | |
bpe_merges=bpe_merges, | |
byte_encoder=byte_encoder, | |
byte_decoder=byte_decoder, | |
tokenize=tokenize | |
) | |
return encoder_obj | |
def codegen_tokenize(text, tokenizer): | |
return tokenizer.encode(text) | |
def codegen_decode(tokens, tokenizer): | |
return tokenizer.decode(tokens) |