Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
import copy | |
from configs import * | |
from extensions import * | |
class SentimentClassifierModel(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embedding = nn.Embedding(config.vocab_size, config.d_model) | |
self.lstm = nn.LSTM(config.d_model, config.d_model, batch_first=True, bidirectional=True) | |
self.fc = nn.Linear(config.d_model * 2, 3) | |
def forward(self, input_ids): | |
embedded = self.embedding(input_ids) | |
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths=[input_ids.size(1)]*input_ids.size(0), batch_first=True, enforce_sorted=False) | |
packed_output, _ = self.lstm(packed_embedded) | |
output, _ = nn.utils.rnn.pad_packed_sequence(packed_output, batch_first=True) | |
pooled = output[:, -1, :] | |
logits = self.fc(pooled) | |
return logits | |
class STTModel(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.conv1 = nn.Conv1d(1, 16, kernel_size=3, stride=2, padding=1) | |
self.relu1 = nn.ReLU() | |
self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2) | |
self.conv2 = nn.Conv1d(16, 32, kernel_size=3, padding=1) | |
self.relu2 = nn.ReLU() | |
self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2) | |
self.lstm = nn.LSTM(32 * (config.max_position_embeddings // 8), 128, batch_first=True, bidirectional=True) | |
self.fc = nn.Linear(128 * 2, config.vocab_size) | |
def forward(self, audio_data): | |
x = self.pool1(self.relu1(self.conv1(audio_data.unsqueeze(1)))) | |
x = self.pool2(self.relu2(self.conv2(x))) | |
x = x.transpose(1, 2).contiguous() | |
x = x.view(x.size(0), -1, x.size(2)) | |
packed_output = nn.utils.rnn.pack_padded_sequence(x, lengths=[x.size(1)]*x.size(0), batch_first=True, enforce_sorted=False) | |
packed_output, _ = self.lstm(packed_output) | |
output, _ = nn.utils.rnn.pad_packed_sequence(packed_output, batch_first=True) | |
logits = self.fc(output) | |
return logits | |
class TTSModel(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embedding = nn.Embedding(config.vocab_size, config.d_model) | |
self.lstm = nn.LSTM(config.d_model, config.d_model, batch_first=True, bidirectional=True) | |
self.fc = nn.Linear(config.d_model * 2, 1) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, input_ids): | |
embedded = self.embedding(input_ids) | |
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths=[input_ids.size(1)]*input_ids.size(0), batch_first=True, enforce_sorted=False) | |
packed_output, _ = self.lstm(packed_embedded) | |
output, _ = nn.utils.rnn.pad_packed_sequence(packed_output, batch_first=True) | |
logits = self.fc(output) | |
audio = self.sigmoid(logits) | |
return audio | |
class MusicGenModel(nn.Module): | |
def __init__(self, config: MusicGenConfig): | |
super().__init__() | |
self.config = config | |
self.embedding = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.transformer_layers = nn.ModuleList([CodeGenBlock(config) for _ in range(config.num_hidden_layers)]) | |
self.fc_out = nn.Linear(config.hidden_size, config.vocab_size) | |
def forward(self, input_ids): | |
embedded_tokens = self.embedding(input_ids) | |
hidden_states = embedded_tokens | |
for layer in self.transformer_layers: | |
hidden_states = layer(hidden_states) | |
logits = self.fc_out(hidden_states) | |
return logits | |
def sample(self, attributes, sample_rate, duration): | |
input_tokens = torch.randint(0, self.config.vocab_size, (1, 1), dtype=torch.long).to(device) | |
audio_output = [] | |
num_steps = int(duration * sample_rate / 1024) | |
for _ in tqdm(range(num_steps), desc="Generating music"): | |
logits = self.forward(input_tokens) | |
predicted_token = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True) | |
audio_output.append(predicted_token.cpu()) | |
input_tokens = torch.cat((input_tokens, predicted_token), dim=1) | |
audio_output = torch.cat(audio_output, dim=1).float() | |
return audio_output |