Spaces:
Running
Running
File size: 15,788 Bytes
1c817fd e83e49f 1c817fd 0ff6756 1c817fd e83e49f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import yaml
from PIL import Image
from skimage import img_as_ubyte, transform
import safetensors
import librosa
from pydub import AudioSegment
import imageio
from scipy.io import loadmat, savemat, wavfile
import glob
import tempfile
from tqdm import tqdm
import numpy as np
import math
import torchvision
import os
import re
import shutil
from yacs.config import CfgNode as CN
import requests
import subprocess
import cv2
from collections import OrderedDict
def img2tensor(imgs, bgr2rgb=True, float32=True):
if isinstance(imgs, np.ndarray):
if imgs.ndim == 3:
imgs = imgs[..., np.newaxis]
imgs = torch.from_numpy(imgs.transpose((2, 0, 1)))
elif isinstance(imgs, Image.Image):
imgs = torch.from_numpy(np.array(imgs)).permute(2, 0, 1)
else:
raise TypeError(f'Type `{type(imgs)}` is not suitable for img2tensor')
if bgr2rgb:
if imgs.shape[0] == 3:
imgs = imgs[[2, 1, 0], :, :]
if float32:
imgs = imgs.float() / 255.
return imgs
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
if not isinstance(tensor, torch.Tensor):
raise TypeError(f'Input tensor should be torch.Tensor, but got {type(tensor)}')
tensor = tensor.float().cpu()
tensor = tensor.clamp_(*min_max)
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
output_img = tensor.mul(255).round()
output_img = np.transpose(output_img.numpy(), (1, 2, 0))
output_img = np.clip(output_img, 0, 255).astype(np.uint8)
if rgb2bgr:
output_img = cv2.cvtColor(output_img, cv2.COLOR_RGB2BGR)
return output_img if out_type == np.uint8 else output_img.astype(out_type) / 255.
class RealESRGANer():
def __init__(self, scale, model_path, model=None, tile=0, tile_pad=10, pre_pad=0, half=False, device=None, gpu_id=None):
self.scale = scale
self.tile = tile
self.tile_pad = tile_pad
self.pre_pad = pre_pad
self.mod_scale = None
self.half = half
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = device
if model is None:
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=scale)
if half:
model.half()
loadnet = torch.load(model_path, map_location=lambda storage, loc: storage)
if 'params' in loadnet:
model.load_state_dict(loadnet['params'], strict=True)
elif 'params_ema' in loadnet:
model.load_state_dict(loadnet['params_ema'], strict=True)
else:
model.load_state_dict(loadnet, strict=True)
model.eval()
self.model = model.to(self.device)
def enhance(self, img, outscale=None, tile=None, tile_pad=None, pre_pad=None, half=None):
h_input, w_input = img.shape[0:2]
if outscale is None:
outscale = self.scale
if tile is None:
tile = self.tile
if tile_pad is None:
tile_pad = self.tile_pad
if pre_pad is None:
pre_pad = self.pre_pad
if half is None:
half = self.half
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img_tensor = img2tensor(img)
img_tensor = img_tensor.unsqueeze(0).to(self.device)
if half:
img_tensor = img_tensor.half()
mod_scale = self.mod_scale
h_pad, w_pad = 0, 0
if mod_scale is not None:
h_pad, w_pad = int(np.ceil(h_input / mod_scale) * mod_scale - h_input), int(np.ceil(w_input / mod_scale) * mod_scale - w_input)
img_tensor = F.pad(img_tensor, (0, w_pad, 0, h_pad), 'reflect')
window_size = 256
scale = self.scale
overlap_ratio = 0.5
if w_input * h_input < window_size**2:
tile = None
if tile is not None and tile > 0:
tile_overlap = tile * overlap_ratio
sf = scale
stride_w = math.ceil(tile - tile_overlap)
stride_h = math.ceil(tile - tile_overlap)
numW = math.ceil((w_input + tile_overlap) / stride_w)
numH = math.ceil((h_input + tile_overlap) / stride_h)
paddingW = (numW - 1) * stride_w + tile - w_input
paddingH = (numH - 1) * stride_h + tile - h_input
padding_bottom = int(max(paddingH, 0))
padding_right = int(max(paddingW, 0))
padding_left, padding_top = 0, 0
img_tensor = F.pad(img_tensor, (padding_left, padding_right, padding_top, padding_bottom), mode='reflect')
output_h, output_w = padding_top + h_input * scale + padding_bottom, padding_left + w_input * scale + padding_right
output_tensor = torch.zeros([1, 3, output_h, output_w], dtype=img_tensor.dtype, device=self.device)
windows = []
for row in range(numH):
for col in range(numW):
start_x = col * stride_w
start_y = row * stride_h
end_x = min(start_x + tile, img_tensor.shape[3])
end_y = min(start_y + tile, img_tensor.shape[2])
windows.append(img_tensor[:, :, start_y:end_y, start_x:end_x])
results = []
batch_size = 8
for i in range(0, len(windows), batch_size):
batch_windows = torch.stack(windows[i:min(i + batch_size, len(windows))], dim=0)
with torch.no_grad():
results.append(self.model(batch_windows))
results = torch.cat(results, dim=0)
count = 0
for row in range(numH):
for col in range(numW):
start_x = col * stride_w
start_y = row * stride_h
end_x = min(start_x + tile, img_tensor.shape[3])
end_y = min(start_y + tile, img_tensor.shape[2])
out_start_x, out_start_y = start_x * sf, start_y * sf
out_end_x, out_end_y = end_x * sf, end_y * sf
output_tensor[:, :, out_start_y:out_end_y, out_start_x:out_end_x] += results[count][:, :, :end_y * sf - out_start_y, :end_x * sf - out_start_x]
count += 1
forward_img = output_tensor[:, :, :h_input * sf, :w_input * sf]
else:
with torch.no_grad():
forward_img = self.model(img_tensor)
if half:
forward_img = forward_img.float()
output_img = tensor2img(forward_img.squeeze(0).clamp_(0, 1))
if mod_scale is not None:
output_img = output_img[:h_input * self.scale, :w_input * self.scale, ...]
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB)
return [output_img, None]
def enhance(self, img, outscale=None, tile=None, tile_pad=None, pre_pad=None, half=None):
h_input, w_input = img.shape[0:2]
if outscale is None:
outscale = self.scale
if tile is None:
tile = self.tile
if tile_pad is None:
tile_pad = self.tile_pad
if pre_pad is None:
pre_pad = self.pre_pad
if half is None:
half = self.half
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img_tensor = img2tensor(img)
img_tensor = img_tensor.unsqueeze(0).to(self.device)
if half:
img_tensor = img_tensor.half()
mod_scale = self.mod_scale
h_pad, w_pad = 0, 0
if mod_scale is not None:
h_pad, w_pad = int(np.ceil(h_input / mod_scale) * mod_scale - h_input), int(np.ceil(w_input / mod_scale) * mod_scale - w_input)
img_tensor = F.pad(img_tensor, (0, w_pad, 0, h_pad), 'reflect')
window_size = 256
scale = self.scale
overlap_ratio = 0.5
if w_input * h_input < window_size**2:
tile = None
if tile is not None and tile > 0:
tile_overlap = tile * overlap_ratio
sf = scale
stride_w = math.ceil(tile - tile_overlap)
stride_h = math.ceil(tile - tile_overlap)
numW = math.ceil((w_input + tile_overlap) / stride_w)
numH = math.ceil((h_input + tile_overlap) / stride_h)
paddingW = (numW - 1) * stride_w + tile - w_input
paddingH = (numH - 1) * stride_h + tile - h_input
padding_bottom = int(max(paddingH, 0))
padding_right = int(max(paddingW, 0))
padding_left, padding_top = 0, 0
img_tensor = F.pad(img_tensor, (padding_left, padding_right, padding_top, padding_bottom), mode='reflect')
output_h, output_w = padding_top + h_input * scale + padding_bottom, padding_left + w_input * scale + padding_right
output_tensor = torch.zeros([1, 3, output_h, output_w], dtype=img_tensor.dtype, device=self.device)
windows = []
for row in range(numH):
for col in range(numW):
start_x = col * stride_w
start_y = row * stride_h
end_x = min(start_x + tile, img_tensor.shape[3])
end_y = min(start_y + tile, img_tensor.shape[2])
windows.append(img_tensor[:, :, start_y:end_y, start_x:end_x])
results = []
batch_size = 8
for i in range(0, len(windows), batch_size):
batch_windows = torch.stack(windows[i:min(i + batch_size, len(windows))], dim=0)
with torch.no_grad():
results.append(self.model(batch_windows))
results = torch.cat(results, dim=0)
count = 0
for row in range(numH):
for col in range(numW):
start_x = col * stride_w
start_y = row * stride_h
end_x = min(start_x + tile, img_tensor.shape[3])
end_y = min(start_y + tile, img_tensor.shape[2])
out_start_x, out_start_y = start_x * sf, start_y * sf
out_end_x, out_end_y = end_x * sf, end_y * sf
output_tensor[:, :, out_start_y:out_end_y, out_start_x:out_end_x] += results[count][:, :, :end_y * sf - out_start_y, :end_x * sf - out_start_x]
count += 1
forward_img = output_tensor[:, :, :h_input * sf, :w_input * sf]
else:
with torch.no_grad():
forward_img = self.model(img_tensor)
if half:
forward_img = forward_img.float()
output_img = tensor2img(forward_img.squeeze(0).clamp_(0, 1))
if mod_scale is not None:
output_img = output_img[:h_input * self.scale, :w_input * self.scale, ...]
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB)
return [output_img, None]
def save_video_with_watermark(video_frames, audio_path, output_path, watermark_path='./assets/sadtalker_logo.png'):
try:
watermark = imageio.imread(watermark_path)
except FileNotFoundError:
watermark = None
writer = imageio.get_writer(output_path, fps=25)
try:
for frame in tqdm(video_frames, 'Generating video'):
if watermark is not None:
frame_h, frame_w = frame.shape[:2]
watermark_h, watermark_w = watermark.shape[:2]
if watermark_h > frame_h or watermark_w > frame_w:
watermark = transform.resize(watermark, (frame_h // 4, frame_w // 4))
watermark_h, watermark_w = watermark.shape[:2]
start_h = frame_h - watermark_h - 10
start_w = frame_w - watermark_w - 10
frame[start_h:start_h+watermark_h, start_w:start_w+watermark_h, :] = watermark
writer.append_data(img_as_ubyte(frame))
except Exception as e:
print(f"Error in video writing: {e}")
finally:
writer.close()
if audio_path is not None:
try:
command = "ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}".format(audio_path, output_path, output_path.replace('.mp4', '_with_audio.mp4'))
subprocess.call(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
os.remove(output_path)
os.rename(output_path.replace('.mp4', '_with_audio.mp4'), output_path)
except Exception as e:
print(f"Error adding audio to video: {e}")
def paste_pic(video_path, pic_path, crop_info, audio_path, output_path):
try:
y_start, y_end, x_start, x_end, old_size, cropped_size = crop_info[0][0], crop_info[0][1], crop_info[1][0], crop_info[1][1], crop_info[2], crop_info[3]
source_image_h, source_image_w = old_size
cropped_h, cropped_w = cropped_size
delta_h, delta_w = source_image_h - cropped_h, source_image_w - cropped_w
box = [x_start, y_start, source_image_w - x_end, source_image_h - y_end]
command = "ffmpeg -y -i {} -i {} -filter_complex \"[1]crop=w={}:h={}:x={}:y={},[s];[0][s]overlay=x={}:y={}\" -codec:a copy {}".format(video_path, pic_path, cropped_w, cropped_h, box[0], box[1], box[0], box[1], output_path)
subprocess.call(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except Exception as e:
print(f"Error pasting picture to video: {e}")
def color_transfer_batch(source, target, mode='numpy'):
source_np = tensor2img(source)
target_np = tensor2img(target)
source_lab = cv2.cvtColor(source_np, cv2.COLOR_RGB2LAB).astype(np.float32)
target_lab = cv2.cvtColor(target_np, cv2.COLOR_RGB2LAB).astype(np.float32)
source_mu = np.mean(source_lab, axis=(0, 1), keepdims=True)
source_std = np.std(source_lab, axis=(0, 1), keepdims=True)
target_mu = np.mean(target_lab, axis=(0, 1), keepdims=True)
target_std = np.std(target_lab, axis=(0, 1), keepdims=True)
transfer_lab = (target_lab - target_mu) * (source_std / target_std) + source_mu
transfer_rgb = cv2.cvtColor(np.clip(transfer_lab, 0, 255).astype(np.uint8), cv2.COLOR_LAB2RGB)
transfer_rgb_tensor = img2tensor(transfer_rgb)
return transfer_rgb_tensor.unsqueeze(0).to(source.device)
def load_video_to_cv2(path, resize=None):
video = []
try:
cap = cv2.VideoCapture(path)
if not cap.isOpened():
raise Exception("Error opening video stream or file")
while(cap.isOpened()):
ret, frame = cap.read()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if resize is not None:
frame_rgb = cv2.resize(frame_rgb, resize)
video.append(frame_rgb)
else:
break
cap.release()
except Exception as e:
print(f"Error loading video: {e}")
return video
def get_prior_from_bfm(bfm_path):
mat_path = os.path.join(bfm_path, 'BFM_prior.mat')
C = loadmat(mat_path)
pc_tex = torch.tensor(C['pc_tex'].astype(np.float32)).unsqueeze(0)
pc_exp = torch.tensor(C['pc_exp'].astype(np.float32)).unsqueeze(0)
u_tex = torch.tensor(C['u_tex'].astype(np.float32)).unsqueeze(0)
u_exp = torch.tensor(C['u_exp'].astype(np.float32)).unsqueeze(0)
prior_coeff = {
'pc_tex': pc_tex,
'pc_exp': pc_exp,
'u_tex': u_tex,
'u_exp': u_exp
}
return prior_coeff |