File size: 15,788 Bytes
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff6756
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import torch
import torch.nn as nn
import torch.nn.functional as F
import yaml
from PIL import Image
from skimage import img_as_ubyte, transform
import safetensors
import librosa
from pydub import AudioSegment
import imageio
from scipy.io import loadmat, savemat, wavfile
import glob
import tempfile
from tqdm import tqdm
import numpy as np
import math
import torchvision
import os
import re
import shutil
from yacs.config import CfgNode as CN
import requests
import subprocess
import cv2
from collections import OrderedDict

def img2tensor(imgs, bgr2rgb=True, float32=True):
    if isinstance(imgs, np.ndarray):
        if imgs.ndim == 3:
            imgs = imgs[..., np.newaxis]
        imgs = torch.from_numpy(imgs.transpose((2, 0, 1)))
    elif isinstance(imgs, Image.Image):
        imgs = torch.from_numpy(np.array(imgs)).permute(2, 0, 1)
    else:
        raise TypeError(f'Type `{type(imgs)}` is not suitable for img2tensor')
    if bgr2rgb:
        if imgs.shape[0] == 3:
            imgs = imgs[[2, 1, 0], :, :]
    if float32:
        imgs = imgs.float() / 255.
    return imgs

def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
    if not isinstance(tensor, torch.Tensor):
        raise TypeError(f'Input tensor should be torch.Tensor, but got {type(tensor)}')
    tensor = tensor.float().cpu()
    tensor = tensor.clamp_(*min_max)
    tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
    output_img = tensor.mul(255).round()
    output_img = np.transpose(output_img.numpy(), (1, 2, 0))
    output_img = np.clip(output_img, 0, 255).astype(np.uint8)
    if rgb2bgr:
        output_img = cv2.cvtColor(output_img, cv2.COLOR_RGB2BGR)
    return output_img if out_type == np.uint8 else output_img.astype(out_type) / 255.

class RealESRGANer():
    def __init__(self, scale, model_path, model=None, tile=0, tile_pad=10, pre_pad=0, half=False, device=None, gpu_id=None):
        self.scale = scale
        self.tile = tile
        self.tile_pad = tile_pad
        self.pre_pad = pre_pad
        self.mod_scale = None
        self.half = half
        if device is None:
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device
        if model is None:
            model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=scale)
        if half:
            model.half()
        loadnet = torch.load(model_path, map_location=lambda storage, loc: storage)
        if 'params' in loadnet:
            model.load_state_dict(loadnet['params'], strict=True)
        elif 'params_ema' in loadnet:
            model.load_state_dict(loadnet['params_ema'], strict=True)
        else:
            model.load_state_dict(loadnet, strict=True)
        model.eval()
        self.model = model.to(self.device)

    def enhance(self, img, outscale=None, tile=None, tile_pad=None, pre_pad=None, half=None):
        h_input, w_input = img.shape[0:2]
        if outscale is None:
            outscale = self.scale
        if tile is None:
            tile = self.tile
        if tile_pad is None:
            tile_pad = self.tile_pad
        if pre_pad is None:
            pre_pad = self.pre_pad
        if half is None:
            half = self.half
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        img_tensor = img2tensor(img)
        img_tensor = img_tensor.unsqueeze(0).to(self.device)
        if half:
            img_tensor = img_tensor.half()
        mod_scale = self.mod_scale
        h_pad, w_pad = 0, 0
        if mod_scale is not None:
            h_pad, w_pad = int(np.ceil(h_input / mod_scale) * mod_scale - h_input), int(np.ceil(w_input / mod_scale) * mod_scale - w_input)
            img_tensor = F.pad(img_tensor, (0, w_pad, 0, h_pad), 'reflect')
        window_size = 256
        scale = self.scale
        overlap_ratio = 0.5
        if w_input * h_input < window_size**2:
            tile = None
        if tile is not None and tile > 0:
            tile_overlap = tile * overlap_ratio
            sf = scale
            stride_w = math.ceil(tile - tile_overlap)
            stride_h = math.ceil(tile - tile_overlap)
            numW = math.ceil((w_input + tile_overlap) / stride_w)
            numH = math.ceil((h_input + tile_overlap) / stride_h)
            paddingW = (numW - 1) * stride_w + tile - w_input
            paddingH = (numH - 1) * stride_h + tile - h_input
            padding_bottom = int(max(paddingH, 0))
            padding_right = int(max(paddingW, 0))
            padding_left, padding_top = 0, 0
            img_tensor = F.pad(img_tensor, (padding_left, padding_right, padding_top, padding_bottom), mode='reflect')
            output_h, output_w = padding_top + h_input * scale + padding_bottom, padding_left + w_input * scale + padding_right
            output_tensor = torch.zeros([1, 3, output_h, output_w], dtype=img_tensor.dtype, device=self.device)
            windows = []
            for row in range(numH):
                for col in range(numW):
                    start_x = col * stride_w
                    start_y = row * stride_h
                    end_x = min(start_x + tile, img_tensor.shape[3])
                    end_y = min(start_y + tile, img_tensor.shape[2])
                    windows.append(img_tensor[:, :, start_y:end_y, start_x:end_x])
            results = []
            batch_size = 8
            for i in range(0, len(windows), batch_size):
                batch_windows = torch.stack(windows[i:min(i + batch_size, len(windows))], dim=0)
                with torch.no_grad():
                    results.append(self.model(batch_windows))
            results = torch.cat(results, dim=0)
            count = 0
            for row in range(numH):
                for col in range(numW):
                    start_x = col * stride_w
                    start_y = row * stride_h
                    end_x = min(start_x + tile, img_tensor.shape[3])
                    end_y = min(start_y + tile, img_tensor.shape[2])
                    out_start_x, out_start_y = start_x * sf, start_y * sf
                    out_end_x, out_end_y = end_x * sf, end_y * sf
                    output_tensor[:, :, out_start_y:out_end_y, out_start_x:out_end_x] += results[count][:, :, :end_y * sf - out_start_y, :end_x * sf - out_start_x]
                    count += 1
            forward_img = output_tensor[:, :, :h_input * sf, :w_input * sf]
        else:
            with torch.no_grad():
                forward_img = self.model(img_tensor)
        if half:
            forward_img = forward_img.float()
        output_img = tensor2img(forward_img.squeeze(0).clamp_(0, 1))
        if mod_scale is not None:
            output_img = output_img[:h_input * self.scale, :w_input * self.scale, ...]
        output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB)
        return [output_img, None]

    def enhance(self, img, outscale=None, tile=None, tile_pad=None, pre_pad=None, half=None):
        h_input, w_input = img.shape[0:2]
        if outscale is None:
            outscale = self.scale
        if tile is None:
            tile = self.tile
        if tile_pad is None:
            tile_pad = self.tile_pad
        if pre_pad is None:
            pre_pad = self.pre_pad
        if half is None:
            half = self.half
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        img_tensor = img2tensor(img)
        img_tensor = img_tensor.unsqueeze(0).to(self.device)
        if half:
            img_tensor = img_tensor.half()
        mod_scale = self.mod_scale
        h_pad, w_pad = 0, 0
        if mod_scale is not None:
            h_pad, w_pad = int(np.ceil(h_input / mod_scale) * mod_scale - h_input), int(np.ceil(w_input / mod_scale) * mod_scale - w_input)
            img_tensor = F.pad(img_tensor, (0, w_pad, 0, h_pad), 'reflect')
        window_size = 256
        scale = self.scale
        overlap_ratio = 0.5
        if w_input * h_input < window_size**2:
            tile = None
        if tile is not None and tile > 0:
            tile_overlap = tile * overlap_ratio
            sf = scale
            stride_w = math.ceil(tile - tile_overlap)
            stride_h = math.ceil(tile - tile_overlap)
            numW = math.ceil((w_input + tile_overlap) / stride_w)
            numH = math.ceil((h_input + tile_overlap) / stride_h)
            paddingW = (numW - 1) * stride_w + tile - w_input
            paddingH = (numH - 1) * stride_h + tile - h_input
            padding_bottom = int(max(paddingH, 0))
            padding_right = int(max(paddingW, 0))
            padding_left, padding_top = 0, 0
            img_tensor = F.pad(img_tensor, (padding_left, padding_right, padding_top, padding_bottom), mode='reflect')
            output_h, output_w = padding_top + h_input * scale + padding_bottom, padding_left + w_input * scale + padding_right
            output_tensor = torch.zeros([1, 3, output_h, output_w], dtype=img_tensor.dtype, device=self.device)
            windows = []
            for row in range(numH):
                for col in range(numW):
                    start_x = col * stride_w
                    start_y = row * stride_h
                    end_x = min(start_x + tile, img_tensor.shape[3])
                    end_y = min(start_y + tile, img_tensor.shape[2])
                    windows.append(img_tensor[:, :, start_y:end_y, start_x:end_x])
            results = []
            batch_size = 8
            for i in range(0, len(windows), batch_size):
                batch_windows = torch.stack(windows[i:min(i + batch_size, len(windows))], dim=0)
                with torch.no_grad():
                    results.append(self.model(batch_windows))
            results = torch.cat(results, dim=0)
            count = 0
            for row in range(numH):
                for col in range(numW):
                    start_x = col * stride_w
                    start_y = row * stride_h
                    end_x = min(start_x + tile, img_tensor.shape[3])
                    end_y = min(start_y + tile, img_tensor.shape[2])
                    out_start_x, out_start_y = start_x * sf, start_y * sf
                    out_end_x, out_end_y = end_x * sf, end_y * sf
                    output_tensor[:, :, out_start_y:out_end_y, out_start_x:out_end_x] += results[count][:, :, :end_y * sf - out_start_y, :end_x * sf - out_start_x]
                    count += 1
            forward_img = output_tensor[:, :, :h_input * sf, :w_input * sf]
        else:
            with torch.no_grad():
                forward_img = self.model(img_tensor)
        if half:
            forward_img = forward_img.float()
        output_img = tensor2img(forward_img.squeeze(0).clamp_(0, 1))
        if mod_scale is not None:
            output_img = output_img[:h_input * self.scale, :w_input * self.scale, ...]
        output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB)
        return [output_img, None]

def save_video_with_watermark(video_frames, audio_path, output_path, watermark_path='./assets/sadtalker_logo.png'):
    try:
        watermark = imageio.imread(watermark_path)
    except FileNotFoundError:
        watermark = None
    writer = imageio.get_writer(output_path, fps=25)
    try:
        for frame in tqdm(video_frames, 'Generating video'):
            if watermark is not None:
                frame_h, frame_w = frame.shape[:2]
                watermark_h, watermark_w = watermark.shape[:2]
                if watermark_h > frame_h or watermark_w > frame_w:
                    watermark = transform.resize(watermark, (frame_h // 4, frame_w // 4))
                    watermark_h, watermark_w = watermark.shape[:2]
                start_h = frame_h - watermark_h - 10
                start_w = frame_w - watermark_w - 10
                frame[start_h:start_h+watermark_h, start_w:start_w+watermark_h, :] = watermark
            writer.append_data(img_as_ubyte(frame))
    except Exception as e:
        print(f"Error in video writing: {e}")
    finally:
        writer.close()
    if audio_path is not None:
        try:
            command = "ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}".format(audio_path, output_path, output_path.replace('.mp4', '_with_audio.mp4'))
            subprocess.call(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
            os.remove(output_path)
            os.rename(output_path.replace('.mp4', '_with_audio.mp4'), output_path)
        except Exception as e:
            print(f"Error adding audio to video: {e}")

def paste_pic(video_path, pic_path, crop_info, audio_path, output_path):
    try:
        y_start, y_end, x_start, x_end, old_size, cropped_size = crop_info[0][0], crop_info[0][1], crop_info[1][0], crop_info[1][1], crop_info[2], crop_info[3]
        source_image_h, source_image_w = old_size
        cropped_h, cropped_w = cropped_size
        delta_h, delta_w = source_image_h - cropped_h, source_image_w - cropped_w
        box = [x_start, y_start, source_image_w - x_end, source_image_h - y_end]
        command = "ffmpeg -y -i {} -i {} -filter_complex \"[1]crop=w={}:h={}:x={}:y={},[s];[0][s]overlay=x={}:y={}\" -codec:a copy {}".format(video_path, pic_path, cropped_w, cropped_h, box[0], box[1], box[0], box[1], output_path)
        subprocess.call(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    except Exception as e:
        print(f"Error pasting picture to video: {e}")

def color_transfer_batch(source, target, mode='numpy'):
    source_np = tensor2img(source)
    target_np = tensor2img(target)
    source_lab = cv2.cvtColor(source_np, cv2.COLOR_RGB2LAB).astype(np.float32)
    target_lab = cv2.cvtColor(target_np, cv2.COLOR_RGB2LAB).astype(np.float32)
    source_mu = np.mean(source_lab, axis=(0, 1), keepdims=True)
    source_std = np.std(source_lab, axis=(0, 1), keepdims=True)
    target_mu = np.mean(target_lab, axis=(0, 1), keepdims=True)
    target_std = np.std(target_lab, axis=(0, 1), keepdims=True)
    transfer_lab = (target_lab - target_mu) * (source_std / target_std) + source_mu
    transfer_rgb = cv2.cvtColor(np.clip(transfer_lab, 0, 255).astype(np.uint8), cv2.COLOR_LAB2RGB)
    transfer_rgb_tensor = img2tensor(transfer_rgb)
    return transfer_rgb_tensor.unsqueeze(0).to(source.device)

def load_video_to_cv2(path, resize=None):
    video = []
    try:
        cap = cv2.VideoCapture(path)
        if not cap.isOpened():
            raise Exception("Error opening video stream or file")
        while(cap.isOpened()):
            ret, frame = cap.read()
            if ret:
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                if resize is not None:
                    frame_rgb = cv2.resize(frame_rgb, resize)
                video.append(frame_rgb)
            else:
                break
        cap.release()
    except Exception as e:
        print(f"Error loading video: {e}")
    return video

def get_prior_from_bfm(bfm_path):
    mat_path = os.path.join(bfm_path, 'BFM_prior.mat')
    C = loadmat(mat_path)
    pc_tex = torch.tensor(C['pc_tex'].astype(np.float32)).unsqueeze(0)
    pc_exp = torch.tensor(C['pc_exp'].astype(np.float32)).unsqueeze(0)
    u_tex = torch.tensor(C['u_tex'].astype(np.float32)).unsqueeze(0)
    u_exp = torch.tensor(C['u_exp'].astype(np.float32)).unsqueeze(0)
    prior_coeff = {
        'pc_tex': pc_tex,
        'pc_exp': pc_exp,
        'u_tex': u_tex,
        'u_exp': u_exp
    }
    return prior_coeff