Spaces:
Running
Running
File size: 6,048 Bytes
7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd e83e49f 7b74407 e83e49f 1c817fd 7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd 7b74407 1c817fd e83e49f 7b74407 1c817fd 7b74407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import time, threading, queue, uuid, unicodedata, re
from deep_translator import GoogleTranslator
from duckduckgo_search import DDGS
import nltk, torch, torch.nn as nn
nltk.download('punkt')
categories = ['News', 'Sports', 'Entertainment']
TEXT_GENERATION_RATE = 10
text_queue = queue.Queue()
reasoning_queue = queue.Queue()
feedback_queue = queue.Queue()
vocabulary = ["<PAD>", "<EOS>"]
word_to_index = {word: idx for idx, word in enumerate(vocabulary)}
seen_responses = set()
news_clf = None
class SimpleClassifier(nn.Module):
def __init__(self, vocab_size, num_classes, embedding_dim=128):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.fc = nn.Linear(embedding_dim, num_classes)
def forward(self, x):
embedded = self.embedding(x)
pooled = embedded.mean(dim=1)
out = self.fc(pooled)
return out
def tokenize_text(text): return nltk.word_tokenize(text)
def update_vocabulary(tokens): global vocabulary, word_to_index; for token in tokens: if token not in word_to_index: word_to_index[token] = len(vocabulary); vocabulary.append(token)
def text_to_vector(text): tokens = tokenize_text(text); update_vocabulary(tokens); indices = [word_to_index.get(token, 0) for token in tokens]; return torch.tensor(indices, dtype=torch.long).unsqueeze(0)
def generate_and_queue_text(language):
global categories, text_queue
num_categories = len(categories); num_texts_per_category = TEXT_GENERATION_RATE // (2 * num_categories)
while True:
for category in categories:
for _ in range(num_texts_per_category):
uid = uuid.uuid4(); base_text = f"Category: {category}. ID:{uid}"
try: translator = GoogleTranslator(source='auto', target=language); text = translator.translate(base_text)
except: text = base_text
processed_text = ''.join(c for c in unicodedata.normalize('NFKC', text) if c.isprintable()); text_queue.put((processed_text, category)); time.sleep(0)
def background_training():
global categories, news_clf, feedback_queue, vocabulary
if categories is None: categories = ['DefaultCategory']
num_classes = len(categories); learning_rate = 0.01; epochs = 1
if news_clf is None: news_clf = SimpleClassifier(len(vocabulary), num_classes)
optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate); criterion = nn.CrossEntropyLoss()
while True:
try:
feedback_item = feedback_queue.get(timeout=10)
if feedback_item:
input_text, generated_text = feedback_item; input_vector = text_to_vector(input_text)
if len(vocabulary) == 0: vocabulary.extend(["<PAD>", "<EOS>"]); news_clf = SimpleClassifier(len(vocabulary), num_classes); optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate)
if input_vector.size(0) != len(vocabulary) and len(vocabulary) > 0: news_clf = SimpleClassifier(len(vocabulary), num_classes); optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate); input_vector = text_to_vector(input_text)
tokens = tokenize_text(input_text); update_vocabulary(tokens); tokens_indices = [word_to_index.get(word, 0) for word in tokens]
input_tensor = torch.tensor([tokens_indices], dtype=torch.long); target_index = categories.index(generated_text) if generated_text in categories else 0
target_category_index = torch.tensor([target_index], dtype=torch.long)
if num_classes <= 1: num_classes = 2; news_clf.fc = nn.Linear(128, num_classes)
for _ in range(epochs): optimizer.zero_grad(); output = news_clf(input_tensor); loss = criterion(output, target_category_index); loss.backward(); optimizer.step()
feedback_queue.task_done()
except queue.Empty: pass
except: time.sleep(5)
def perform_reasoning_stream(text_input, temperature=0.7, top_k=40, top_p=0.0, repetition_penalty=1.2):
for token in sample_sequence(text_input, model_gpt2, enc, length=999999999, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, device=device):
if token == "<END_STREAM>": yield "<END_STREAM>"; break
yield token + " "
def background_reasoning_queue():
global reasoning_queue, seen_responses
while True:
try:
item = reasoning_queue.get(timeout=1)
if item is None: reasoning_queue.task_done(); continue
text_input = item.get('text_input'); temperature = item.get('temperature', 0.7); top_k = item.get('top_k', 40); top_p = item.get('top_p', 0.0); repetition_penalty = item.get('repetition_penalty', 1.2)
resp_queue = item.get('response_queue', queue.Queue())
if not text_input: resp_queue.put({"error": "Empty text input received."}); reasoning_queue.task_done(); continue
generated_text_stream = perform_reasoning_stream(text_input, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty)
full_response = "";
for chunk in generated_text_stream:
if chunk == "<END_STREAM>": break
full_response += chunk
cleaned_response = re.sub(r'\s+(?=[.,,。])', '', full_response.replace("<|endoftext|>", "").strip())
if cleaned_response in seen_responses: final_response = "**Response is repetitive. Please try again or rephrase your query.**"; resp_queue.put({"text": final_response})
else: seen_responses.add(cleaned_response); final_response = cleaned_response; resp_queue.put({"text": final_response})
reasoning_queue.task_done()
except queue.Empty: pass
except Exception as e:
try: resp_queue.put({"error": str(e)})
except: pass
if reasoning_queue and not reasoning_queue.empty(): reasoning_queue.task_done()
|