File size: 6,048 Bytes
7b74407
1c817fd
 
7b74407
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
7b74407
1c817fd
 
 
 
 
 
 
 
7b74407
 
 
1c817fd
 
 
7b74407
1c817fd
 
 
7b74407
 
 
 
1c817fd
 
 
7b74407
 
 
 
1c817fd
 
 
 
7b74407
 
 
 
 
1c817fd
7b74407
 
1c817fd
7b74407
 
1c817fd
 
e83e49f
7b74407
e83e49f
1c817fd
 
 
 
 
 
7b74407
 
1c817fd
7b74407
1c817fd
7b74407
1c817fd
7b74407
1c817fd
e83e49f
7b74407
 
1c817fd
7b74407
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import time, threading, queue, uuid, unicodedata, re
from deep_translator import GoogleTranslator
from duckduckgo_search import DDGS
import nltk, torch, torch.nn as nn

nltk.download('punkt')
categories = ['News', 'Sports', 'Entertainment']
TEXT_GENERATION_RATE = 10
text_queue = queue.Queue()
reasoning_queue = queue.Queue()
feedback_queue = queue.Queue()
vocabulary = ["<PAD>", "<EOS>"]
word_to_index = {word: idx for idx, word in enumerate(vocabulary)}
seen_responses = set()
news_clf = None

class SimpleClassifier(nn.Module):
    def __init__(self, vocab_size, num_classes, embedding_dim=128):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.fc = nn.Linear(embedding_dim, num_classes)
    def forward(self, x):
        embedded = self.embedding(x)
        pooled = embedded.mean(dim=1)
        out = self.fc(pooled)
        return out

def tokenize_text(text): return nltk.word_tokenize(text)
def update_vocabulary(tokens): global vocabulary, word_to_index; for token in tokens: if token not in word_to_index: word_to_index[token] = len(vocabulary); vocabulary.append(token)
def text_to_vector(text): tokens = tokenize_text(text); update_vocabulary(tokens); indices = [word_to_index.get(token, 0) for token in tokens]; return torch.tensor(indices, dtype=torch.long).unsqueeze(0)

def generate_and_queue_text(language):
    global categories, text_queue
    num_categories = len(categories); num_texts_per_category = TEXT_GENERATION_RATE // (2 * num_categories)
    while True:
        for category in categories:
            for _ in range(num_texts_per_category):
                uid = uuid.uuid4(); base_text = f"Category: {category}. ID:{uid}"
                try: translator = GoogleTranslator(source='auto', target=language); text = translator.translate(base_text)
                except: text = base_text
                processed_text = ''.join(c for c in unicodedata.normalize('NFKC', text) if c.isprintable()); text_queue.put((processed_text, category)); time.sleep(0)

def background_training():
    global categories, news_clf, feedback_queue, vocabulary
    if categories is None: categories = ['DefaultCategory']
    num_classes = len(categories); learning_rate = 0.01; epochs = 1
    if news_clf is None: news_clf = SimpleClassifier(len(vocabulary), num_classes)
    optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate); criterion = nn.CrossEntropyLoss()
    while True:
        try:
            feedback_item = feedback_queue.get(timeout=10)
            if feedback_item:
                input_text, generated_text = feedback_item; input_vector = text_to_vector(input_text)
                if len(vocabulary) == 0: vocabulary.extend(["<PAD>", "<EOS>"]); news_clf = SimpleClassifier(len(vocabulary), num_classes); optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate)
                if input_vector.size(0) != len(vocabulary) and len(vocabulary) > 0: news_clf = SimpleClassifier(len(vocabulary), num_classes); optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate); input_vector = text_to_vector(input_text)
                tokens = tokenize_text(input_text); update_vocabulary(tokens); tokens_indices = [word_to_index.get(word, 0) for word in tokens]
                input_tensor = torch.tensor([tokens_indices], dtype=torch.long); target_index = categories.index(generated_text) if generated_text in categories else 0
                target_category_index = torch.tensor([target_index], dtype=torch.long)
                if num_classes <= 1: num_classes = 2; news_clf.fc = nn.Linear(128, num_classes)
                for _ in range(epochs): optimizer.zero_grad(); output = news_clf(input_tensor); loss = criterion(output, target_category_index); loss.backward(); optimizer.step()
                feedback_queue.task_done()
        except queue.Empty: pass
        except: time.sleep(5)

def perform_reasoning_stream(text_input, temperature=0.7, top_k=40, top_p=0.0, repetition_penalty=1.2):
    for token in sample_sequence(text_input, model_gpt2, enc, length=999999999, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, device=device):
        if token == "<END_STREAM>": yield "<END_STREAM>"; break
        yield token + " "

def background_reasoning_queue():
    global reasoning_queue, seen_responses
    while True:
        try:
            item = reasoning_queue.get(timeout=1)
            if item is None: reasoning_queue.task_done(); continue
            text_input = item.get('text_input'); temperature = item.get('temperature', 0.7); top_k = item.get('top_k', 40); top_p = item.get('top_p', 0.0); repetition_penalty = item.get('repetition_penalty', 1.2)
            resp_queue = item.get('response_queue', queue.Queue())
            if not text_input: resp_queue.put({"error": "Empty text input received."}); reasoning_queue.task_done(); continue
            generated_text_stream = perform_reasoning_stream(text_input, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty)
            full_response = ""; 
            for chunk in generated_text_stream:
                if chunk == "<END_STREAM>": break
                full_response += chunk
            cleaned_response = re.sub(r'\s+(?=[.,,。])', '', full_response.replace("<|endoftext|>", "").strip())
            if cleaned_response in seen_responses: final_response = "**Response is repetitive. Please try again or rephrase your query.**"; resp_queue.put({"text": final_response})
            else: seen_responses.add(cleaned_response); final_response = cleaned_response; resp_queue.put({"text": final_response})
            reasoning_queue.task_done()
        except queue.Empty: pass
        except Exception as e: 
            try: resp_queue.put({"error": str(e)})
            except: pass
            if reasoning_queue and not reasoning_queue.empty(): reasoning_queue.task_done()