File size: 16,388 Bytes
7b74407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
from main import *
from tts_api import tts_api as tts_module_api
from stt_api import stt_api as stt_module_api
from sentiment_api import sentiment_api as sentiment_module_api
from imagegen_api import imagegen_api as imagegen_module_api
from musicgen_api import musicgen_api as musicgen_module_api
from translation_api import translation_api as translation_module_api
from codegen_api import codegen_api as codegen_module_api
from text_to_video_api import text_to_video_api as text_to_video_module_api
from summarization_api import summarization_api as summarization_module_api
from image_to_3d_api import image_to_3d_api as image_to_3d_module_api
from xtts_api import xtts_api as xtts_module_api
from flask import Flask, request, jsonify, Response, send_file, stream_with_context
from flask_cors import CORS
import io
import queue
import base64
import gradio as gr

app = Flask(__name__)
CORS(app)

html_code = """<!DOCTYPE html>

<html lang="en">

<head>

    <meta charset="UTF-8">

    <meta name="viewport" content="width=device-width, initial-scale=1.0">

    <title>AI Text Generation</title>

    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/4.1.1/animate.min.css"/>

    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css" integrity="sha512-9usAa10IRO0HhonpyAIVpjrylPvoDwiPUiKdWk5t3PyolY1cOd4DSE0Ga+ri4AuTroPR5aQvXU9xC6qOPnzFeg==" crossorigin="anonymous" referrerpolicy="no-referrer" />

    <script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script>

    <style>

        body {

            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

            background: #f0f0f0;

            color: #333;

            margin: 0;

            padding: 0;

            display: flex;

            flex-direction: column;

            align-items: center;

            min-height: 100vh;

        }

        .container {

            width: 95%;

            max-width: 900px;

            padding: 20px;

            background-color: #fff;

            box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

            border-radius: 8px;

            margin-top: 20px;

            margin-bottom: 20px;

            display: flex;

            flex-direction: column;

        }

        .header {

            text-align: center;

            margin-bottom: 20px;

        }

        .header h1 {

            font-size: 2em;

            color: #333;

        }

        .form-group {

            margin-bottom: 15px;

        }

        .form-group textarea {

            width: 100%;

            padding: 10px;

            border: 1px solid #ccc;

            border-radius: 5px;

            font-size: 16px;

            box-sizing: border-box;

            resize: vertical;

        }

        button {

            padding: 10px 15px;

            border: none;

            border-radius: 5px;

            background-color: #007bff;

            color: white;

            font-size: 18px;

            cursor: pointer;

            transition: background-color 0.3s ease;

        }

        button:hover {

            background-color: #0056b3;

        }

        #output {

            margin-top: 20px;

            padding: 15px;

            border: 1px solid #ddd;

            border-radius: 5px;

            background-color: #f9f9f9;

            white-space: pre-wrap;

            word-break: break-word;

            overflow-y: auto;

            max-height: 100vh;

        }

        #output strong {

            font-weight: bold;

        }

        .animated-text {

            position: fixed;

            top: 20px;

            left: 20px;

            font-size: 1.5em;

            color: rgba(0, 0, 0, 0.1);

            pointer-events: none;

            z-index: -1;

        }

        @media (max-width: 768px) {

            .container {

                width: 98%;

                margin-top: 10px;

                margin-bottom: 10px;

                padding: 15px;

            }

            .header h1 {

                font-size: 1.8em;

            }

            .form-group textarea, .form-group input[type="text"] {

                font-size: 14px;

                padding: 8px;

            }

            button {

                font-size: 16px;

                padding: 8px 12px;

            }

            #output {

                font-size: 14px;

                padding: 10px;

                margin-top: 15px;

            }

        }

    </style>

</head>

<body>

<div class="animated-text animate__animated animate__fadeIn animate__infinite infinite">AI POWERED</div>

<div class="container">

    <div class="header animate__animated animate__fadeInDown">

    </div>

    <div class="form-group animate__animated animate__fadeInLeft">

        <textarea id="text" rows="5" placeholder="Enter text"></textarea>

    </div>

    <button onclick="generateText()" class="animate__animated animate__fadeInUp">Generate Reasoning</button>

    <div id="output" class="animate__animated">

        <strong>Response:</strong><br>

        <span id="generatedText"></span>

    </div>

</div>

<script>

    let eventSource = null;

    let accumulatedText = "";

    let lastResponse = "";

    async function generateText() {

        const inputText = document.getElementById("text").value;

        document.getElementById("generatedText").innerText = "";

        accumulatedText = "";

        if (eventSource) {

            eventSource.close();

        }

        const temp = 0.7;

        const top_k_val = 40;

        const top_p_val = 0.0;

        const repetition_penalty_val = 1.2;

        const requestData = {

            text: inputText,

            temp: temp,

            top_k: top_k_val,

            top_p: top_p_val,

            reppenalty: repetition_penalty_val

        };

        const params = new URLSearchParams(requestData).toString();

        eventSource = new EventSource('/api/v1/generate_stream?' + params);

        eventSource.onmessage = function(event) {

            if (event.data === "<END_STREAM>") {

                eventSource.close();

                const currentResponse = accumulatedText.replace("<|endoftext|>", "").replace(/\s+(?=[.,,。])/g, '').trim();

                if (currentResponse === lastResponse.trim()) {

                    accumulatedText = "**Response is repetitive. Please try again or rephrase your query.**";

                } else {

                    lastResponse = currentResponse;

                }

                document.getElementById("generatedText").innerHTML = marked.parse(accumulatedText);

                return;

            }

            accumulatedText += event.data;

            let partialText = accumulatedText.replace("<|endoftext|>", "").replace(/\s+(?=[.,,。])/g, '').trim();

            document.getElementById("generatedText").innerHTML = marked.parse(partialText);

        };

        eventSource.onerror = function(error) {

            console.error("SSE error", error);

            eventSource.close();

        };

        const outputDiv = document.getElementById("output");

        outputDiv.classList.add("show");

    }

    function base64ToBlob(base64Data, contentType) {

        contentType = contentType || '';

        const sliceSize = 1024;

        const byteCharacters = atob(base64Data);

        const bytesLength = byteCharacters.length;

        const slicesCount = Math.ceil(bytesLength / sliceSize);

        const byteArrays = new Array(slicesCount);

        for (let sliceIndex = sliceIndex < slicesCount; ++sliceIndex) {

            const begin = sliceIndex * sliceSize;

            const end = Math.min(begin + sliceSize, bytesLength);

            const bytes = new Array(end - begin);

            for (let offset = begin, i = 0; offset < end; ++i, ++offset) {

                bytes[i] = byteCharacters[offset].charCodeAt(0);

            }

            byteArrays[sliceIndex] = new Uint8Array(bytes);

        }

        return new Blob(byteArrays, { type: contentType });

    }

</script>

</body>

</html>

"""
feedback_queue = queue.Queue()


@app.route("/")
def index():
    return html_code

@app.route("/api/v1/generate_stream", methods=["GET"])
def generate_stream():
    text = request.args.get("text", "")
    temp = float(request.args.get("temp", 0.7))
    top_k = int(request.args.get("top_k", 40))
    top_p = float(request.args.get("top_p", 0.0))
    reppenalty = float(request.args.get("reppenalty", 1.2))
    response_queue = queue.Queue()
    reasoning_queue.put({
        'text_input': text,
        'temperature': temp,
        'top_k': top_k,
        'top_p': top_p,
        'repetition_penalty': reppenalty,
        'response_queue': response_queue
    })
    @stream_with_context
    def event_stream():
        while True:
            output = response_queue.get()
            if "error" in output:
                yield "data: <ERROR>\n\n"
                break
            text_chunk = output.get("text")
            if text_chunk:
                for word in text_chunk.split(' '):
                    clean_word = word.strip()
                    if clean_word:
                        yield "data: " + clean_word + "\n\n"
                yield "data: <END_STREAM>\n\n"
                break
    return Response(event_stream(), mimetype="text/event-stream")

@app.route("/api/v1/generate", methods=["POST"])
def generate():
    data = request.get_json()
    text = data.get("text", "")
    temp = float(data.get("temp", 0.7))
    top_k = int(data.get("top_k", 40))
    top_p = float(data.get("top_p", 0.0))
    reppenalty = float(data.get("reppenalty", 1.2))
    response_queue = queue.Queue()
    reasoning_queue.put({
        'text_input': text,
        'temperature': temp,
        'top_k': top_k,
        'top_p': top_p,
        'repetition_penalty': reppenalty,
        'response_queue': response_queue
    })
    output = response_queue.get()
    if "error" in output:
        return jsonify({"error": output["error"]}), 500
    result_text = output.get("text", "").strip()
    return jsonify({"response": result_text})

@app.route("/api/v1/feedback", methods=["POST"])
def feedback():
    data = request.get_json()
    feedback_text = data.get("feedback_text")
    correct_category = data.get("correct_category")
    if feedback_text and correct_category:
        feedback_queue.put((feedback_text, correct_category))
        return jsonify({"status": "feedback received"})
    return jsonify({"status": "feedback failed"}), 400

@app.route("/api/v1/tts", methods=["POST"])
def tts_api():
    return tts_module_api()

@app.route("/api/v1/stt", methods=["POST"])
def stt_api():
    return stt_module_api()

@app.route("/api/v1/sentiment", methods=["POST"])
def sentiment_api():
    return sentiment_module_api()

@app.route("/api/v1/imagegen", methods=["POST"])
def imagegen_api():
    return imagegen_module_api()

@app.route("/api/v1/musicgen", methods=["POST"])
def musicgen_api():
    return musicgen_module_api()

@app.route("/api/v1/translation", methods=["POST"])
def translation_api():
    return translation_module_api()

@app.route("/api/v1/codegen", methods=["POST"])
def codegen_api():
    return codegen_module_api()

@app.route("/api/v1/text_to_video", methods=["POST"])
def text_to_video_api():
    return text_to_video_module_api()

@app.route("/api/v1/summarization", methods=["POST"])
def summarization_api():
    return summarization_module_api()

@app.route("/api/v1/image_to_3d", methods=["POST"])
def image_to_3d_api():
    return image_to_3d_module_api()

@app.route("/api/v1/xtts_clone", methods=["POST"])
def xtts_clone_api():
    return xtts_module_api()

@app.route("/api/v1/sadtalker", methods=["POST"])
def sadtalker():
    from sadtalker_api import router as sadtalker_router
    return sadtalker_router.create_video()

if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.Markdown("## AI Powerhouse")
        with gr.Tab("Text Generation"):
            text_input = gr.Textbox(lines=5, placeholder="Enter text")
            text_output = gr.Markdown()
            text_button = gr.Button("Generate Text")
            text_button.click(generate, inputs=text_input, outputs=text_output)

        with gr.Tab("Image Generation"):
            image_text_input = gr.Textbox(lines=3, placeholder="Enter prompt for image")
            image_output = gr.Image()
            image_button = gr.Button("Generate Image")
            image_button.click(imagegen_api, inputs=image_text_input, outputs=image_output)

        with gr.Tab("Music Generation"):
            music_text_input = gr.Textbox(lines=3, placeholder="Enter prompt for music")
            music_output = gr.Audio()
            music_button = gr.Button("Generate Music")
            music_button.click(musicgen_api, inputs=music_text_input, outputs=music_output)

        with gr.Tab("Code Generation"):
            code_text_input = gr.Textbox(lines=3, placeholder="Enter prompt for code")
            code_output = gr.File()
            code_button = gr.Button("Generate Code")
            code_button.click(codegen_api, inputs=code_text_input, outputs=code_output)

        with gr.Tab("Text to Video"):
            video_text_input = gr.Textbox(lines=3, placeholder="Enter prompt for video")
            video_output = gr.Video()
            video_button = gr.Button("Generate Video")
            video_button.click(text_to_video_api, inputs=video_text_input, outputs=video_output)

        with gr.Tab("Summarization"):
            summary_text_input = gr.Textbox(lines=5, placeholder="Enter text to summarize")
            summary_output = gr.Textbox()
            summary_button = gr.Button("Summarize")
            summary_button.click(summarization_api, inputs=summary_text_input, outputs=summary_output)

        with gr.Tab("Translation"):
            translate_text_input = gr.Textbox(lines=3, placeholder="Enter text to translate")
            translate_lang_dropdown = gr.Dropdown(['es', 'en', 'fr', 'de'], value='es', label="Target Language")
            translation_output = gr.Textbox()
            translate_button = gr.Button("Translate")
            translate_button.click(translation_api, inputs=[translate_text_input, translate_lang_dropdown], outputs=translation_output)

        with gr.Tab("Sentiment Analysis"):
            sentiment_text_input = gr.Textbox(lines=3, placeholder="Enter text for sentiment analysis")
            sentiment_output = gr.Textbox()
            sentiment_button = gr.Button("Analyze Sentiment")
            sentiment_button.click(sentiment_api, inputs=sentiment_text_input, outputs=sentiment_output)

        with gr.Tab("Text to Speech"):
            tts_text_input = gr.Textbox(lines=3, placeholder="Enter text for speech")
            tts_output = gr.Audio()
            tts_button = gr.Button("Generate Speech")
            tts_button.click(tts_api, inputs=tts_text_input, outputs=tts_output)

        with gr.Tab("Voice Cloning (XTTS)"):
            xtts_text_input = gr.Textbox(lines=3, placeholder="Enter text for voice cloning")
            xtts_audio_input = gr.Audio(source="upload", type="filepath", label="Reference Audio for Voice Cloning")
            xtts_output = gr.Audio()
            xtts_button = gr.Button("Clone Voice")
            xtts_button.click(xtts_module_api, inputs=[xtts_text_input, xtts_audio_input], outputs=xtts_output)

        with gr.Tab("Speech to Text"):
            stt_audio_input = gr.Audio(source="microphone", type="filepath")
            stt_output = gr.Textbox()
            stt_button = gr.Button("Transcribe Speech")
            stt_button.click(stt_api, inputs=stt_audio_input, outputs=stt_output)

        with gr.Tab("Image to 3D"):
            image_3d_input = gr.Image(source="upload", type="filepath")
            model_3d_output = gr.File()
            image_3d_button = gr.Button("Generate 3D Model")
            image_3d_button.click(image_to_3d_api, inputs=image_3d_input, outputs=model_3d_output)

    app = gr.routes.App(demo)

    app.run(host="0.0.0.0", port=7860)