File size: 10,138 Bytes
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff6756
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from constants import *

class GPT2Config:
    def __init__(self, vocab_size_or_config_json_file=50257, n_positions=MAX_LENGTH, n_ctx=MAX_LENGTH, n_embd=768, n_layer=12, n_head=12, layer_norm_epsilon=1e-05, initializer_range=0.02):
        self.vocab_size = vocab_size_or_config_json_file
        self.n_ctx = n_ctx
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)

class MBartConfig:
    def __init__(self, vocab_size, d_model, num_layers, num_heads, pad_token_id, eos_token_id):
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.encoder_layers = num_layers
        self.decoder_layers = num_layers
        self.encoder_attention_heads = num_heads
        self.decoder_attention_heads = num_heads
        self.encoder_ffn_dim = d_model * 4
        self.decoder_ffn_dim = d_model * 4
        self.dropout = 0.1
        self.attention_dropout = 0.0
        self.activation_dropout = 0.0
        self.max_position_embeddings = 1024
        self.init_std = 0.02
        self.layer_norm_eps = 1e-5
        self.pad_token_id = pad_token_id
        self.eos_token_id = eos_token_id
        self.bos_token_id = 0
        self.decoder_start_token_id = 2
        self.output_past = True
        self.scale_embedding = True
        self.use_cache = True
        self.num_hidden_layers = num_layers

class CodeGenConfig:
    def __init__(self, vocab_size, n_embd, n_layer, n_head):
        self.vocab_size = vocab_size
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_positions = 2048
        self.resid_pdrop = 0.1
        self.embd_pdrop = 0.1
        self.attn_pdrop = 0.1
        self.activation_function = "gelu_new"
        self.n_ctx = 2048
        self.pad_token_id = 50256
        self.eos_token_id = 50256
        self.initializer_range = 0.02

class SummarizationConfig:
    def __init__(self):
        self.vocab_size = 50265
        self.max_position_embeddings = 1024
        self.encoder_layers = 12
        self.encoder_ffn_dim = 4096
        self.encoder_attention_heads = 16
        self.decoder_layers = 12
        self.decoder_ffn_dim = 4096
        self.decoder_attention_heads = 16
        self.encoder_layerdrop = 0.0
        self.decoder_layerdrop = 0.0
        self.activation_function = "gelu"
        self.d_model = 1024
        self.dropout = 0.1
        self.attention_dropout = 0.0
        self.activation_dropout = 0.0
        self.init_std = 0.02
        self.classifier_dropout = 0.0
        self.num_labels = 3
        self.pad_token_id = 1
        self.bos_token_id = 0
        self.eos_token_id = 2
        self.layer_norm_eps = 1e-05
        self.num_beams = 4
        self.early_stopping = True
        self.max_length = 100
        self.min_length = 30
        self.scale_embedding = False

class Clip4ClipConfig:
    def __init__(self, vocab_size=30522, hidden_size=512, num_hidden_layers=6, num_attention_heads=8, intermediate_size=2048, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.all_head_size = self.num_attention_heads * self.hidden_size
        self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
        for key, value in kwargs.items():
            setattr(self, key, value)

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)

class MusicGenConfig:
    def __init__(self, vocab_size=2048, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, layer_norm_eps=1e-05, initializer_range=0.02, pad_token_id=0, bos_token_id=1, eos_token_id=2, n_positions=2048, n_ctx=2048, **kwargs):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.n_positions = n_positions
        self.n_ctx = n_ctx
        self.all_head_size = self.num_attention_heads * self.hidden_size
        for key, value in kwargs.items():
            setattr(self, key, value)

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)

class BartConfig:
    def __init__(self, vocab_size=50265, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, activation_function="gelu", d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, num_labels=3, pad_token_id=1, bos_token_id=0, eos_token_id=2, layer_norm_eps=1e-05, num_beams=4, early_stopping=True, max_length=100, min_length=30, scale_embedding=False, **kwargs):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.encoder_layers = encoder_layers
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_layers = decoder_layers
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_attention_heads = decoder_attention_heads
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.activation_function = activation_function
        self.d_model = d_model
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.init_std = init_std
        self.classifier_dropout = classifier_dropout
        self.num_labels = num_labels
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.layer_norm_eps = layer_norm_eps
        self.num_beams = num_beams
        self.early_stopping = True
        self.max_length = max_length
        self.min_length = min_length
        self.scale_embedding = False
        for key, value in kwargs.items():
            setattr(self, key, value)

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)

class OpenLRMConfig:
    def __init__(self, obj_dim=1024, hidden_dim=512, num_layers=6, num_heads=8, dropout_prob=0.1, **kwargs):
        self.obj_dim = obj_dim
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dropout_prob = dropout_prob
        self.all_head_size = self.num_heads * self.hidden_dim
        for key, value in kwargs.items():
            setattr(self, key, value)

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)

class UNet2DConditionModelConfig:
    def __init__(self, sample_size=64, layers_per_block=2, block_out_channels=[320, 640, 1280, 1280], downsample=[2, 2, 2, 2], upsample=[2, 2, 2, 2], cross_attention_dim=768, act_fn="silu", norm_num_groups=32, num_attention_heads=8, in_channels=4, out_channels=4, attention_head_dim=64, **kwargs):
        self.sample_size = sample_size
        self.layers_per_block = layers_per_block
        self.block_out_channels = block_out_channels
        self.downsample = downsample
        self.upsample = upsample
        self.cross_attention_dim = cross_attention_dim
        self.act_fn = act_fn
        self.norm_num_groups = norm_num_groups
        self.num_attention_heads = num_attention_heads
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.attention_head_dim = attention_head_dim
        for key, value in kwargs.items():
            setattr(self, key, value)

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)

class AutoencoderKLConfig:
    def __init__(self, **kwargs):
        self.sample_size = 64
        self.latent_channels = 4
        self.layers_per_block = 2
        self.block_out_channels = [128, 256, 512, 512]
        self.downsample = [2, 2, 2, 2]
        self.upsample = [2, 2, 2, 2]
        self.act_fn = "silu"
        self.norm_num_groups = 32
        self.num_channels_every_n_layers = 2
        for key, value in kwargs.items():
            setattr(self, key, value)

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)