Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import spaces
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
|
@@ -9,50 +9,18 @@ MODEL_ID = "microsoft/bitnet-b1.58-2B-4T-gguf" # Инструктивная в
|
|
9 |
# --- Ленивая загрузка модели ---
|
10 |
model_loaded = False
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(
|
15 |
-
MODEL_ID,
|
16 |
-
device_map="auto",
|
17 |
-
torch_dtype=torch.bfloat16,
|
18 |
-
trust_remote_code=True
|
19 |
-
)
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
21 |
-
return model, tokenizer
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
def generate_response(message: str, history=None):
|
26 |
-
try:
|
27 |
-
model, tokenizer = load_model()
|
28 |
-
|
29 |
-
# Форматируем сообщение с историей (если нужно)
|
30 |
-
chat_history = history if history else []
|
31 |
-
prompt = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in chat_history] + [f"User: {message}\nAssistant:"])
|
32 |
-
|
33 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
34 |
-
|
35 |
-
outputs = model.generate(
|
36 |
-
**inputs,
|
37 |
-
max_new_tokens=128, # Сильно уменьшаем для ZeroGPU
|
38 |
-
temperature=0.7,
|
39 |
-
do_sample=True
|
40 |
-
)
|
41 |
-
|
42 |
-
return tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
43 |
-
|
44 |
-
except Exception as e:
|
45 |
-
return f"Ошибка: {str(e)}"
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
chat = gr.ChatInterface(
|
52 |
-
generate_response,
|
53 |
-
examples=["Привет!", "Объясни квантовую физику просто"],
|
54 |
-
title="Mistral-7B"
|
55 |
-
)
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
|
|
|
9 |
# --- Ленивая загрузка модели ---
|
10 |
model_loaded = False
|
11 |
|
12 |
+
import spaces
|
13 |
+
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
pipe = DiffusionPipeline.from_pretrained(MODEL_ID)
|
16 |
+
pipe.to('cuda')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
@spaces.GPU
|
19 |
+
def generate(prompt):
|
20 |
+
return pipe(prompt).images
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
gr.Interface(
|
23 |
+
fn=generate,
|
24 |
+
inputs=gr.Text(),
|
25 |
+
outputs=gr.Gallery(),
|
26 |
+
).launch()
|