KayleeJunyu commited on
Commit
42e99d9
·
verified ·
1 Parent(s): 526ca6b

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +632 -0
app.py ADDED
@@ -0,0 +1,632 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import gradio as gr
4
+ import matplotlib.pylab as plt
5
+ import torch.nn.functional as F
6
+
7
+ from vae import HVAE
8
+ from datasets import morphomnist, ukbb, mimic, get_attr_max_min
9
+ from pgm.flow_pgm import MorphoMNISTPGM, FlowPGM, ChestPGM
10
+ from app_utils import (
11
+ mnist_graph,
12
+ brain_graph,
13
+ chest_graph,
14
+ vae_preprocess,
15
+ normalize,
16
+ preprocess_brain,
17
+ get_fig_arr,
18
+ postprocess,
19
+ MidpointNormalize,
20
+ )
21
+
22
+ DATA, MODELS = {}, {}
23
+ for k in ["Morpho-MNIST", "Brain MRI", "Chest X-ray"]:
24
+ DATA[k], MODELS[k] = {}, {}
25
+
26
+ # mnist
27
+ DIGITS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
28
+ # brain
29
+ MRISEQ_CAT = ["T1", "T2-FLAIR"] # 0,1
30
+ SEX_CAT = ["female", "male"] # 0,1
31
+ HEIGHT, WIDTH = 270, 270
32
+ # chest
33
+ SEX_CAT_CHEST = ["male", "female"] # 0,1
34
+ RACE_CAT = ["white", "asian", "black"] # 0,1,2
35
+ FIND_CAT = ["no disease", "pleural effusion"]
36
+ DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
37
+
38
+
39
+ class Hparams:
40
+ def update(self, dict):
41
+ for k, v in dict.items():
42
+ setattr(self, k, v)
43
+
44
+
45
+ def get_paths(dataset_id):
46
+ if "MNIST" in dataset_id:
47
+ data_path = "./data/morphomnist"
48
+ pgm_path = "./checkpoints/t_i_d/sup_pgm/checkpoint.pt"
49
+ vae_path = "./checkpoints/t_i_d/dgauss_cond_big_beta1_dropexo/checkpoint.pt"
50
+ elif "Brain" in dataset_id:
51
+ data_path = "./data/ukbb_subset"
52
+ pgm_path = "./checkpoints/m_b_v_s/sup_pgm/checkpoint.pt"
53
+ vae_path = "./checkpoints/m_b_v_s/ukbb192_beta5_dgauss_b33/checkpoint.pt"
54
+ elif "Chest" in dataset_id:
55
+ data_path = "./data/mimic_subset"
56
+ pgm_path = "./checkpoints/a_r_s_f/sup_pgm_mimic/checkpoint.pt"
57
+ vae_path = [
58
+ "./checkpoints/a_r_s_f/mimic_beta9_gelu_dgauss_1_lr3/checkpoint.pt", # base vae
59
+ "./checkpoints/a_r_s_f/mimic_dscm_lr_1e5_lagrange_lr_1_damping_10/6500_checkpoint.pt", # cf trained DSCM
60
+ ]
61
+ return data_path, vae_path, pgm_path
62
+
63
+
64
+ def load_pgm(dataset_id, pgm_path):
65
+ checkpoint = torch.load(pgm_path, map_location=DEVICE)
66
+ args = Hparams()
67
+ args.update(checkpoint["hparams"])
68
+ args.device = DEVICE
69
+ if "MNIST" in dataset_id:
70
+ pgm = MorphoMNISTPGM(args).to(args.device)
71
+ elif "Brain" in dataset_id:
72
+ pgm = FlowPGM(args).to(args.device)
73
+ elif "Chest" in dataset_id:
74
+ pgm = ChestPGM(args).to(args.device)
75
+ pgm.load_state_dict(checkpoint["ema_model_state_dict"])
76
+ MODELS[dataset_id]["pgm"] = pgm
77
+ MODELS[dataset_id]["pgm_args"] = args
78
+
79
+
80
+ def load_vae(dataset_id, vae_path):
81
+ if "Chest" in dataset_id:
82
+ vae_path, dscm_path = vae_path[0], vae_path[1]
83
+ checkpoint = torch.load(vae_path, map_location=DEVICE)
84
+ args = Hparams()
85
+ args.update(checkpoint["hparams"])
86
+ # backwards compatibility hack
87
+ if not hasattr(args, "vae"):
88
+ args.vae = "hierarchical"
89
+ if not hasattr(args, "cond_prior"):
90
+ args.cond_prior = False
91
+ if hasattr(args, "free_bits"):
92
+ args.kl_free_bits = args.free_bits
93
+ args.device = DEVICE
94
+ vae = HVAE(args).to(args.device)
95
+
96
+ if "Chest" in dataset_id:
97
+ dscm_ckpt = torch.load(dscm_path, map_location=DEVICE)
98
+ vae.load_state_dict(
99
+ {
100
+ k[4:]: v
101
+ for k, v in dscm_ckpt["ema_model_state_dict"].items()
102
+ if "vae." in k
103
+ }
104
+ )
105
+ else:
106
+ vae.load_state_dict(checkpoint["ema_model_state_dict"])
107
+ MODELS[dataset_id]["vae"] = vae
108
+ MODELS[dataset_id]["vae_args"] = args
109
+
110
+
111
+ def get_dataloader(dataset_id, data_path):
112
+ MODELS[dataset_id]["pgm_args"].data_dir = data_path
113
+ args = MODELS[dataset_id]["pgm_args"]
114
+ if "MNIST" in dataset_id:
115
+ datasets = morphomnist(args)
116
+ elif "Brain" in dataset_id:
117
+ datasets = ukbb(args)
118
+ elif "Chest" in dataset_id:
119
+ datasets = mimic(args)
120
+ DATA[dataset_id]["test"] = torch.utils.data.DataLoader(
121
+ datasets["test"], shuffle=False, batch_size=args.bs, num_workers=4
122
+ )
123
+
124
+
125
+ def load_dataset(dataset_id):
126
+ data_path, _, pgm_path = get_paths(dataset_id)
127
+ checkpoint = torch.load(pgm_path, map_location=DEVICE)
128
+ args = Hparams()
129
+ args.update(checkpoint["hparams"])
130
+ args.device = DEVICE
131
+ MODELS[dataset_id]["pgm_args"] = args
132
+ get_dataloader(dataset_id, data_path)
133
+
134
+
135
+ def load_model(dataset_id):
136
+ _, vae_path, pgm_path = get_paths(dataset_id)
137
+ load_pgm(dataset_id, pgm_path)
138
+ load_vae(dataset_id, vae_path)
139
+
140
+
141
+ @torch.no_grad()
142
+ def counterfactual_inference(dataset_id, obs, do_pa):
143
+ pa = {k: v.clone() for k, v in obs.items() if k != "x"}
144
+ cf_pa = MODELS[dataset_id]["pgm"].counterfactual(
145
+ obs=pa, intervention=do_pa, num_particles=1
146
+ )
147
+ args, vae = MODELS[dataset_id]["vae_args"], MODELS[dataset_id]["vae"]
148
+ _pa = vae_preprocess(args, {k: v.clone() for k, v in pa.items()})
149
+ _cf_pa = vae_preprocess(args, {k: v.clone() for k, v in cf_pa.items()})
150
+ z_t = 0.1 if "mnist" in args.hps else 1.0
151
+ z = vae.abduct(x=obs["x"], parents=_pa, t=z_t)
152
+ if vae.cond_prior:
153
+ z = [z[j]["z"] for j in range(len(z))]
154
+ px_loc, px_scale = vae.forward_latents(latents=z, parents=_pa)
155
+ cf_loc, cf_scale = vae.forward_latents(latents=z, parents=_cf_pa)
156
+ u = (obs["x"] - px_loc) / px_scale.clamp(min=1e-12)
157
+ u_t = 0.1 if "mnist" in args.hps else 1.0 # cf sampling temp
158
+ cf_scale = cf_scale * u_t
159
+ cf_x = torch.clamp(cf_loc + cf_scale * u, min=-1, max=1)
160
+ return {"cf_x": cf_x, "rec_x": px_loc, "cf_pa": cf_pa}
161
+
162
+
163
+ def get_obs_item(dataset_id, idx=None):
164
+ if idx is None:
165
+ n_test = len(DATA[dataset_id]["test"].dataset)
166
+ idx = torch.randperm(n_test)[0]
167
+ idx = int(idx)
168
+ return idx, DATA[dataset_id]["test"].dataset.__getitem__(idx)
169
+
170
+
171
+ def get_mnist_obs(idx=None):
172
+ dataset_id = "Morpho-MNIST"
173
+ if not DATA[dataset_id]:
174
+ load_dataset(dataset_id)
175
+ idx, obs = get_obs_item(dataset_id, idx)
176
+ x = get_fig_arr(obs["x"].clone().squeeze().numpy())
177
+ t = (obs["thickness"].clone() + 1) / 2 * (6.255515 - 0.87598526) + 0.87598526
178
+ i = (obs["intensity"].clone() + 1) / 2 * (254.90317 - 66.601204) + 66.601204
179
+ y = DIGITS[obs["digit"].clone().argmax(-1)]
180
+ return (idx, x, float(np.round(t, 2)), float(np.round(i, 2)), y)
181
+
182
+
183
+ def get_brain_obs(idx=None):
184
+ dataset_id = "Brain MRI"
185
+ if not DATA[dataset_id]:
186
+ load_dataset(dataset_id)
187
+ idx, obs = get_obs_item(dataset_id, idx)
188
+ x = get_fig_arr(obs["x"].clone().squeeze().numpy())
189
+ m = MRISEQ_CAT[int(obs["mri_seq"].clone().item())]
190
+ s = SEX_CAT[int(obs["sex"].clone().item())]
191
+ a = obs["age"].clone().item()
192
+ b = obs["brain_volume"].clone().item() / 1000 # in ml
193
+ v = obs["ventricle_volume"].clone().item() / 1000 # in ml
194
+ return (idx, x, m, s, a, float(np.round(b, 2)), float(np.round(v, 2)))
195
+
196
+
197
+ def get_chest_obs(idx=None):
198
+ dataset_id = "Chest X-ray"
199
+ if not DATA[dataset_id]:
200
+ load_dataset(dataset_id)
201
+ idx, obs = get_obs_item(dataset_id, idx)
202
+ x = get_fig_arr(postprocess(obs["x"].clone()))
203
+ s = SEX_CAT_CHEST[int(obs["sex"].clone().squeeze().numpy())]
204
+ f = FIND_CAT[int(obs["finding"].clone().squeeze().numpy())]
205
+ r = RACE_CAT[obs["race"].clone().squeeze().numpy().argmax(-1)]
206
+ a = (obs["age"].clone().squeeze().numpy() + 1) * 50
207
+ return (idx, x, r, s, f, float(np.round(a, 1)))
208
+
209
+
210
+ def infer_mnist_cf(*args):
211
+ dataset_id = "Morpho-MNIST"
212
+ idx, _, t, i, y, do_t, do_i, do_y = args
213
+ n_particles = 32
214
+ # preprocess
215
+ obs = DATA[dataset_id]["test"].dataset.__getitem__(int(idx))
216
+ obs["x"] = (obs["x"] - 127.5) / 127.5
217
+ for k, v in obs.items():
218
+ obs[k] = v.view(1, 1) if len(v.shape) < 1 else v.unsqueeze(0)
219
+ obs[k] = obs[k].to(MODELS[dataset_id]["vae_args"].device).float()
220
+ if n_particles > 1:
221
+ ndims = (1,) * 3 if k == "x" else (1,)
222
+ obs[k] = obs[k].repeat(n_particles, *ndims)
223
+ # intervention(s)
224
+ do_pa = {}
225
+ if do_t:
226
+ do_pa["thickness"] = torch.tensor(
227
+ normalize(t, x_max=6.255515, x_min=0.87598526)
228
+ ).view(1, 1)
229
+ if do_i:
230
+ do_pa["intensity"] = torch.tensor(
231
+ normalize(i, x_max=254.90317, x_min=66.601204)
232
+ ).view(1, 1)
233
+ if do_y:
234
+ do_pa["digit"] = F.one_hot(torch.tensor(DIGITS.index(y)), num_classes=10).view(
235
+ 1, 10
236
+ )
237
+
238
+ for k, v in do_pa.items():
239
+ do_pa[k] = (
240
+ v.to(MODELS[dataset_id]["vae_args"].device).float().repeat(n_particles, 1)
241
+ )
242
+ # infer counterfactual
243
+ out = counterfactual_inference(dataset_id, obs, do_pa)
244
+ # avg cf particles
245
+ cf_x = out["cf_x"].mean(0)
246
+ cf_x_std = out["cf_x"].std(0)
247
+ rec_x = out["rec_x"].mean(0)
248
+ cf_t = out["cf_pa"]["thickness"].mean(0)
249
+ cf_i = out["cf_pa"]["intensity"].mean(0)
250
+ cf_y = out["cf_pa"]["digit"].mean(0)
251
+ # post process
252
+ cf_x = postprocess(cf_x)
253
+ cf_x_std = cf_x_std.squeeze().detach().cpu().numpy()
254
+ rec_x = postprocess(rec_x)
255
+ cf_t = np.round((cf_t.item() + 1) / 2 * (6.255515 - 0.87598526) + 0.87598526, 2)
256
+ cf_i = np.round((cf_i.item() + 1) / 2 * (254.90317 - 66.601204) + 66.601204, 2)
257
+ cf_y = DIGITS[cf_y.argmax(-1)]
258
+ # plots
259
+ # plt.close('all')
260
+ effect = cf_x - rec_x
261
+ effect = get_fig_arr(
262
+ effect, cmap="RdBu_r", norm=MidpointNormalize(vmin=-255, midpoint=0, vmax=255)
263
+ )
264
+ cf_x = get_fig_arr(cf_x)
265
+ cf_x_std = get_fig_arr(cf_x_std, cmap="jet")
266
+ return (cf_x, cf_x_std, effect, cf_t, cf_i, cf_y)
267
+
268
+
269
+ def infer_brain_cf(*args):
270
+ dataset_id = "Brain MRI"
271
+ idx, _, m, s, a, b, v = args[:7]
272
+ do_m, do_s, do_a, do_b, do_v = args[7:]
273
+ n_particles = 16
274
+ # preprocessing
275
+ obs = DATA[dataset_id]["test"].dataset.__getitem__(int(idx))
276
+ obs = preprocess_brain(MODELS[dataset_id]["vae_args"], obs)
277
+ for k, _v in obs.items():
278
+ if n_particles > 1:
279
+ ndims = (1,) * 3 if k == "x" else (1,)
280
+ obs[k] = _v.repeat(n_particles, *ndims)
281
+ # interventions(s)
282
+ do_pa = {}
283
+ if do_m:
284
+ do_pa["mri_seq"] = torch.tensor(MRISEQ_CAT.index(m)).view(1, 1)
285
+ if do_s:
286
+ do_pa["sex"] = torch.tensor(SEX_CAT.index(s)).view(1, 1)
287
+ if do_a:
288
+ do_pa["age"] = torch.tensor(a).view(1, 1)
289
+ if do_b:
290
+ do_pa["brain_volume"] = torch.tensor(b * 1000).view(1, 1)
291
+ if do_v:
292
+ do_pa["ventricle_volume"] = torch.tensor(v * 1000).view(1, 1)
293
+ # normalize continuous attributes
294
+ for k in ["age", "brain_volume", "ventricle_volume"]:
295
+ if k in do_pa.keys():
296
+ k_max, k_min = get_attr_max_min(k)
297
+ do_pa[k] = (do_pa[k] - k_min) / (k_max - k_min) # [0,1]
298
+ do_pa[k] = 2 * do_pa[k] - 1 # [-1,1]
299
+
300
+ for k, _v in do_pa.items():
301
+ do_pa[k] = (
302
+ _v.to(MODELS[dataset_id]["vae_args"].device).float().repeat(n_particles, 1)
303
+ )
304
+ # infer counterfactual
305
+ out = counterfactual_inference(dataset_id, obs, do_pa)
306
+ # avg cf particles
307
+ cf_x = out["cf_x"].mean(0)
308
+ cf_x_std = out["cf_x"].std(0)
309
+ rec_x = out["rec_x"].mean(0)
310
+ cf_m = out["cf_pa"]["mri_seq"].mean(0)
311
+ cf_s = out["cf_pa"]["sex"].mean(0)
312
+ # post process
313
+ cf_x = postprocess(cf_x)
314
+ cf_x_std = cf_x_std.squeeze().detach().cpu().numpy()
315
+ rec_x = postprocess(rec_x)
316
+ cf_m = MRISEQ_CAT[int(cf_m.item())]
317
+ cf_s = SEX_CAT[int(cf_s.item())]
318
+ cf_ = {}
319
+ for k in ["age", "brain_volume", "ventricle_volume"]: # unnormalize
320
+ k_max, k_min = get_attr_max_min(k)
321
+ cf_[k] = (out["cf_pa"][k].mean(0).item() + 1) / 2 * (k_max - k_min) + k_min
322
+ # plots
323
+ # plt.close('all')
324
+ effect = cf_x - rec_x
325
+ effect = get_fig_arr(
326
+ effect,
327
+ cmap="RdBu_r",
328
+ norm=MidpointNormalize(vmin=effect.min(), midpoint=0, vmax=effect.max()),
329
+ )
330
+ cf_x = get_fig_arr(cf_x)
331
+ cf_x_std = get_fig_arr(cf_x_std, cmap="jet")
332
+ return (
333
+ cf_x,
334
+ cf_x_std,
335
+ effect,
336
+ cf_m,
337
+ cf_s,
338
+ np.round(cf_["age"], 1),
339
+ np.round(cf_["brain_volume"] / 1000, 2),
340
+ np.round(cf_["ventricle_volume"] / 1000, 2),
341
+ )
342
+
343
+
344
+ def infer_chest_cf(*args):
345
+ dataset_id = "Chest X-ray"
346
+ idx, _, r, s, f, a = args[:6]
347
+ do_r, do_s, do_f, do_a = args[6:]
348
+ n_particles = 16
349
+ # preprocessing
350
+ obs = DATA[dataset_id]["test"].dataset.__getitem__(int(idx))
351
+ for k, v in obs.items():
352
+ obs[k] = v.to(MODELS[dataset_id]["vae_args"].device).float()
353
+ if n_particles > 1:
354
+ ndims = (1,) * 3 if k == "x" else (1,)
355
+ obs[k] = obs[k].repeat(n_particles, *ndims)
356
+ # intervention(s)
357
+ do_pa = {}
358
+ with torch.no_grad():
359
+ if do_s:
360
+ do_pa["sex"] = torch.tensor(SEX_CAT_CHEST.index(s)).view(1, 1)
361
+ if do_f:
362
+ do_pa["finding"] = torch.tensor(FIND_CAT.index(f)).view(1, 1)
363
+ if do_r:
364
+ do_pa["race"] = F.one_hot(
365
+ torch.tensor(RACE_CAT.index(r)), num_classes=3
366
+ ).view(1, 3)
367
+ if do_a:
368
+ do_pa["age"] = torch.tensor(a / 100 * 2 - 1).view(1, 1)
369
+ for k, v in do_pa.items():
370
+ do_pa[k] = (
371
+ v.to(MODELS[dataset_id]["vae_args"].device).float().repeat(n_particles, 1)
372
+ )
373
+ # infer counterfactual
374
+ out = counterfactual_inference(dataset_id, obs, do_pa)
375
+ # avg cf particles
376
+ cf_x = out["cf_x"].mean(0)
377
+ cf_x_std = out["cf_x"].std(0)
378
+ rec_x = out["rec_x"].mean(0)
379
+ cf_r = out["cf_pa"]["race"].mean(0)
380
+ cf_s = out["cf_pa"]["sex"].mean(0)
381
+ cf_f = out["cf_pa"]["finding"].mean(0)
382
+ cf_a = out["cf_pa"]["age"].mean(0)
383
+ # post process
384
+ cf_x = postprocess(cf_x)
385
+ cf_x_std = cf_x_std.squeeze().detach().cpu().numpy()
386
+ rec_x = postprocess(rec_x)
387
+ cf_r = RACE_CAT[cf_r.argmax(-1)]
388
+ cf_s = SEX_CAT_CHEST[int(cf_s.item())]
389
+ cf_f = FIND_CAT[int(cf_f.item())]
390
+ cf_a = (cf_a.item() + 1) * 50
391
+ # plots
392
+ # plt.close('all')
393
+ effect = cf_x - rec_x
394
+ effect = get_fig_arr(
395
+ effect,
396
+ cmap="RdBu_r",
397
+ norm=MidpointNormalize(vmin=effect.min(), midpoint=0, vmax=effect.max()),
398
+ )
399
+ cf_x = get_fig_arr(cf_x)
400
+ cf_x_std = get_fig_arr(cf_x_std, cmap="jet")
401
+ return (cf_x, cf_x_std, effect, cf_r, cf_s, cf_f, np.round(cf_a, 1))
402
+
403
+
404
+ with gr.Blocks(theme=gr.themes.Default()) as demo:
405
+ with gr.Tabs():
406
+
407
+ with gr.TabItem("Brain MRI") as brain_tab:
408
+ brain_id = gr.Textbox(value=brain_tab.label, visible=False)
409
+
410
+ with gr.Row().style(equal_height=True):
411
+ idx_brain = gr.Number(value=0, visible=False)
412
+ with gr.Column(scale=1, min_width=200):
413
+ x_brain = gr.Image(label="Observation", interactive=False).style(
414
+ height=HEIGHT
415
+ )
416
+ with gr.Column(scale=1, min_width=200):
417
+ cf_x_brain = gr.Image(
418
+ label="Counterfactual", interactive=False
419
+ ).style(height=HEIGHT)
420
+ with gr.Column(scale=1, min_width=200):
421
+ cf_x_std_brain = gr.Image(
422
+ label="Counterfactual Uncertainty", interactive=False
423
+ ).style(height=HEIGHT)
424
+ with gr.Column(scale=1, min_width=200):
425
+ effect_brain = gr.Image(
426
+ label="Direct Causal Effect", interactive=False
427
+ ).style(height=HEIGHT)
428
+ with gr.Row():
429
+ with gr.Column(scale=2.55):
430
+ gr.Markdown(
431
+ "**Intervention**"
432
+ # + 20 * "&ensp;"
433
+ # + "[arXiv paper](https://arxiv.org/abs/2306.15764) &ensp; | &ensp; [GitHub code](https://github.com/biomedia-mira/causal-gen)"
434
+ # + "&ensp; | &ensp; Hint: try 90% zoom"
435
+ )
436
+ with gr.Row():
437
+ with gr.Column(min_width=200):
438
+ do_a = gr.Checkbox(label="do(age)", value=False)
439
+ a = gr.Slider(
440
+ label="\u00A0",
441
+ value=50,
442
+ minimum=44,
443
+ maximum=73,
444
+ step=1,
445
+ interactive=False,
446
+ )
447
+ with gr.Column(min_width=200):
448
+ do_s = gr.Checkbox(label="do(sex)", value=False)
449
+ s = gr.Radio(
450
+ ["female", "male"], label="", interactive=False
451
+ )
452
+ with gr.Row():
453
+ with gr.Column(min_width=200):
454
+ do_b = gr.Checkbox(label="do(brain volume)", value=False)
455
+ b = gr.Slider(
456
+ label="\u00A0",
457
+ value=1000,
458
+ minimum=850,
459
+ maximum=1550,
460
+ step=20,
461
+ interactive=False,
462
+ )
463
+ with gr.Column(min_width=200):
464
+ do_v = gr.Checkbox(
465
+ label="do(ventricle volume)", value=False
466
+ )
467
+ v = gr.Slider(
468
+ label="\u00A0",
469
+ value=40,
470
+ minimum=10,
471
+ maximum=125,
472
+ step=2,
473
+ interactive=False,
474
+ )
475
+ with gr.Row():
476
+ new_brain = gr.Button("New Observation")
477
+ reset_brain = gr.Button("Reset", variant="stop")
478
+ submit_brain = gr.Button("Submit", variant="primary")
479
+ with gr.Column(scale=1):
480
+ # gr.Markdown("### &nbsp;")
481
+ causal_graph_brain = gr.Image(
482
+ label="Causal Graph", interactive=False
483
+ ).style(height=340)
484
+
485
+ with gr.TabItem("Chest X-ray") as chest_tab:
486
+ chest_id = gr.Textbox(value=chest_tab.label, visible=False)
487
+
488
+ with gr.Row().style(equal_height=True):
489
+ idx_chest = gr.Number(value=0, visible=False)
490
+ with gr.Column(scale=1, min_width=200):
491
+ x_chest = gr.Image(label="Observation", interactive=False).style(
492
+ height=HEIGHT
493
+ )
494
+ with gr.Column(scale=1, min_width=200):
495
+ cf_x_chest = gr.Image(
496
+ label="Counterfactual", interactive=False
497
+ ).style(height=HEIGHT)
498
+ with gr.Column(scale=1, min_width=200):
499
+ cf_x_std_chest = gr.Image(
500
+ label="Counterfactual Uncertainty", interactive=False
501
+ ).style(height=HEIGHT)
502
+ with gr.Column(scale=1, min_width=200):
503
+ effect_chest = gr.Image(
504
+ label="Direct Causal Effect", interactive=False
505
+ ).style(height=HEIGHT)
506
+
507
+ with gr.Row():
508
+ with gr.Column(scale=2.55):
509
+ gr.Markdown(
510
+ "**Intervention**"
511
+ # + 20 * "&ensp;"
512
+ # + "[arXiv paper](https://arxiv.org/abs/2306.15764) &ensp; | &ensp; [GitHub code](https://github.com/biomedia-mira/causal-gen)"
513
+ # + "&ensp; | &ensp; Hint: try 90% zoom"
514
+ )
515
+ with gr.Row().style(equal_height=True):
516
+ with gr.Column(min_width=200):
517
+ do_a_chest = gr.Checkbox(label="do(age)", value=False)
518
+ a_chest = gr.Slider(
519
+ label="\u00A0", minimum=18, maximum=98, step=1
520
+ )
521
+ with gr.Column(min_width=200):
522
+ do_s_chest = gr.Checkbox(label="do(sex)", value=False)
523
+ s_chest = gr.Radio(
524
+ SEX_CAT_CHEST, label="", interactive=False
525
+ )
526
+
527
+ with gr.Row():
528
+ with gr.Column(min_width=200):
529
+ do_r_chest = gr.Checkbox(label="do(race)", value=False)
530
+ r_chest = gr.Radio(RACE_CAT, label="", interactive=False)
531
+ with gr.Column(min_width=200):
532
+ do_f_chest = gr.Checkbox(label="do(disease)", value=False)
533
+ f_chest = gr.Radio(FIND_CAT, label="", interactive=False)
534
+
535
+ with gr.Row():
536
+ new_chest = gr.Button("New Observation")
537
+ reset_chest = gr.Button("Reset", variant="stop")
538
+ submit_chest = gr.Button("Submit", variant="primary")
539
+ with gr.Column(scale=1):
540
+ # gr.Markdown("### &nbsp;")
541
+ causal_graph_chest = gr.Image(
542
+ label="Causal Graph", interactive=False
543
+ ).style(height=345)
544
+
545
+ # morphomnist
546
+ # do = [do_t, do_i, do_y]
547
+ # obs = [idx, x, t, i, y]
548
+ # cf_out = [cf_x, cf_x_std, effect]
549
+
550
+ # brain
551
+ do_brain = [do_s, do_a, do_b, do_v] # intervention checkboxes
552
+ obs_brain = [idx_brain, x_brain, s, a, b, v] # observed image/attributes
553
+ cf_out_brain = [cf_x_brain, cf_x_std_brain, effect_brain] # counterfactual outputs
554
+
555
+ # chest
556
+ do_chest = [do_r_chest, do_s_chest, do_f_chest, do_a_chest]
557
+ obs_chest = [idx_chest, x_chest, r_chest, s_chest, f_chest, a_chest]
558
+ cf_out_chest = [cf_x_chest, cf_x_std_chest, effect_chest]
559
+
560
+ # on start: load new observations & causal graph
561
+ demo.load(fn=get_brain_obs, inputs=None, outputs=obs_brain)
562
+ demo.load(fn=get_chest_obs, inputs=None, outputs=obs_chest)
563
+
564
+ demo.load(fn=brain_graph, inputs=do_brain, outputs=causal_graph_brain)
565
+ demo.load(fn=chest_graph, inputs=do_chest, outputs=causal_graph_chest)
566
+
567
+ # on tab select: load models
568
+ brain_tab.select(fn=load_model, inputs=brain_id, outputs=None)
569
+ chest_tab.select(fn=load_model, inputs=chest_id, outputs=None)
570
+
571
+ # "new" button: load new observations
572
+ new_chest.click(fn=get_chest_obs, inputs=None, outputs=obs_chest)
573
+ new_brain.click(fn=get_brain_obs, inputs=None, outputs=obs_brain)
574
+
575
+ # "new" button: reset causal graphs
576
+ new_brain.click(fn=brain_graph, inputs=do_brain, outputs=causal_graph_brain)
577
+ new_chest.click(fn=chest_graph, inputs=do_chest, outputs=causal_graph_chest)
578
+
579
+ # "new" button: reset cf output panels
580
+ for _k, _v in zip(
581
+ [new_brain, new_chest], [cf_out_brain, cf_out_chest]
582
+ ):
583
+ _k.click(fn=lambda: (gr.update(value=None),) * 3, inputs=None, outputs=_v)
584
+
585
+ # "reset" button: reload current observations
586
+ reset_brain.click(fn=get_brain_obs, inputs=idx_brain, outputs=obs_brain)
587
+ reset_chest.click(fn=get_chest_obs, inputs=idx_chest, outputs=obs_chest)
588
+
589
+ # "reset" button: deselect intervention checkboxes
590
+ reset_brain.click(
591
+ fn=lambda: (gr.update(value=False),) * len(do_brain),
592
+ inputs=None,
593
+ outputs=do_brain,
594
+ )
595
+ reset_chest.click(
596
+ fn=lambda: (gr.update(value=False),) * len(do_chest),
597
+ inputs=None,
598
+ outputs=do_chest,
599
+ )
600
+
601
+ # "reset" button: reset cf output panels
602
+ for _k, _v in zip(
603
+ [reset_brain, reset_chest], [cf_out_brain, cf_out_chest]
604
+ ):
605
+ _k.click(fn=lambda: plt.close("all"), inputs=None, outputs=None)
606
+ _k.click(fn=lambda: (gr.update(value=None),) * 3, inputs=None, outputs=_v)
607
+
608
+ # enable brain interventions when checkbox is selected & update graph
609
+ for _k, _v in zip(do_brain, [s, a, b, v]):
610
+ _k.change(fn=lambda x: gr.update(interactive=x), inputs=_k, outputs=_v)
611
+ _k.change(brain_graph, inputs=do_brain, outputs=causal_graph_brain)
612
+
613
+ # enable chest interventions when checkbox is selected & update graph
614
+ for _k, _v in zip(do_chest, [r_chest, s_chest, f_chest, a_chest]):
615
+ _k.change(fn=lambda x: gr.update(interactive=x), inputs=_k, outputs=_v)
616
+ _k.change(chest_graph, inputs=do_chest, outputs=causal_graph_chest)
617
+
618
+ # "submit" button: infer countefactuals
619
+ submit_brain.click(
620
+ fn=infer_brain_cf,
621
+ inputs=obs_brain + do_brain,
622
+ outputs=cf_out_brain + [s, a, b, v],
623
+ )
624
+ submit_chest.click(
625
+ fn=infer_chest_cf,
626
+ inputs=obs_chest + do_chest,
627
+ outputs=cf_out_chest + [r_chest, s_chest, f_chest, a_chest],
628
+ )
629
+
630
+ if __name__ == "__main__":
631
+ demo.queue()
632
+ demo.launch()