Upload 6 files
Browse files
__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .model import Dia
|
2 |
+
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"Dia",
|
6 |
+
]
|
audio.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typing as tp
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def build_delay_indices(B: int, T: int, C: int, delay_pattern: tp.List[int]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
7 |
+
"""
|
8 |
+
Precompute (t_idx_BxTxC, indices_BTCx3) so that out[t, c] = in[t - delay[c], c].
|
9 |
+
Negative t_idx => BOS; t_idx >= T => PAD.
|
10 |
+
"""
|
11 |
+
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32)
|
12 |
+
|
13 |
+
t_idx_BxT = torch.broadcast_to(
|
14 |
+
torch.arange(T, dtype=torch.int32)[None, :],
|
15 |
+
[B, T],
|
16 |
+
)
|
17 |
+
t_idx_BxTx1 = t_idx_BxT[..., None]
|
18 |
+
t_idx_BxTxC = t_idx_BxTx1 - delay_arr.view(1, 1, C)
|
19 |
+
|
20 |
+
b_idx_BxTxC = torch.broadcast_to(
|
21 |
+
torch.arange(B, dtype=torch.int32).view(B, 1, 1),
|
22 |
+
[B, T, C],
|
23 |
+
)
|
24 |
+
c_idx_BxTxC = torch.broadcast_to(
|
25 |
+
torch.arange(C, dtype=torch.int32).view(1, 1, C),
|
26 |
+
[B, T, C],
|
27 |
+
)
|
28 |
+
|
29 |
+
# We must clamp time indices to [0..T-1] so gather_nd equivalent won't fail
|
30 |
+
t_clamped_BxTxC = torch.clamp(t_idx_BxTxC, 0, T - 1)
|
31 |
+
|
32 |
+
indices_BTCx3 = torch.stack(
|
33 |
+
[
|
34 |
+
b_idx_BxTxC.reshape(-1),
|
35 |
+
t_clamped_BxTxC.reshape(-1),
|
36 |
+
c_idx_BxTxC.reshape(-1),
|
37 |
+
],
|
38 |
+
dim=1,
|
39 |
+
).long() # Ensure indices are long type for indexing
|
40 |
+
|
41 |
+
return t_idx_BxTxC, indices_BTCx3
|
42 |
+
|
43 |
+
|
44 |
+
def apply_audio_delay(
|
45 |
+
audio_BxTxC: torch.Tensor,
|
46 |
+
pad_value: int,
|
47 |
+
bos_value: int,
|
48 |
+
precomp: tp.Tuple[torch.Tensor, torch.Tensor],
|
49 |
+
) -> torch.Tensor:
|
50 |
+
"""
|
51 |
+
Applies the delay pattern to batched audio tokens using precomputed indices,
|
52 |
+
inserting BOS where t_idx < 0 and PAD where t_idx >= T.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
audio_BxTxC: [B, T, C] int16 audio tokens (or int32/float)
|
56 |
+
pad_value: the padding token
|
57 |
+
bos_value: the BOS token
|
58 |
+
precomp: (t_idx_BxTxC, indices_BTCx3) from build_delay_indices
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
result_BxTxC: [B, T, C] delayed audio tokens
|
62 |
+
"""
|
63 |
+
device = audio_BxTxC.device # Get device from input tensor
|
64 |
+
t_idx_BxTxC, indices_BTCx3 = precomp
|
65 |
+
t_idx_BxTxC = t_idx_BxTxC.to(device) # Move precomputed indices to device
|
66 |
+
indices_BTCx3 = indices_BTCx3.to(device)
|
67 |
+
|
68 |
+
# Equivalent of tf.gather_nd using advanced indexing
|
69 |
+
# Ensure indices are long type if not already (build_delay_indices should handle this)
|
70 |
+
gathered_flat = audio_BxTxC[indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]]
|
71 |
+
gathered_BxTxC = gathered_flat.view(audio_BxTxC.shape)
|
72 |
+
|
73 |
+
# Create masks on the correct device
|
74 |
+
mask_bos = t_idx_BxTxC < 0 # => place bos_value
|
75 |
+
mask_pad = t_idx_BxTxC >= audio_BxTxC.shape[1] # => place pad_value
|
76 |
+
|
77 |
+
# Create scalar tensors on the correct device
|
78 |
+
bos_tensor = torch.tensor(bos_value, dtype=audio_BxTxC.dtype, device=device)
|
79 |
+
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
|
80 |
+
|
81 |
+
# If mask_bos, BOS; else if mask_pad, PAD; else original gather
|
82 |
+
# All tensors should now be on the same device
|
83 |
+
result_BxTxC = torch.where(mask_bos, bos_tensor, torch.where(mask_pad, pad_tensor, gathered_BxTxC))
|
84 |
+
|
85 |
+
return result_BxTxC
|
86 |
+
|
87 |
+
|
88 |
+
def build_revert_indices(B: int, T: int, C: int, delay_pattern: tp.List[int]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
89 |
+
"""
|
90 |
+
Precompute indices for the revert operation using PyTorch.
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
A tuple (t_idx_BxTxC, indices_BTCx3) where:
|
94 |
+
- t_idx_BxTxC is a tensor of shape [B, T, C] computed as time indices plus the delay.
|
95 |
+
- indices_BTCx3 is a tensor of shape [B*T*C, 3] used for gathering, computed from:
|
96 |
+
batch indices, clamped time indices, and channel indices.
|
97 |
+
"""
|
98 |
+
# Use default device unless specified otherwise; assumes inputs might define device later
|
99 |
+
device = None # Or determine dynamically if needed, e.g., from a model parameter
|
100 |
+
|
101 |
+
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32, device=device)
|
102 |
+
|
103 |
+
t_idx_BT1 = torch.broadcast_to(torch.arange(T, device=device).unsqueeze(0), [B, T])
|
104 |
+
t_idx_BT1 = t_idx_BT1.unsqueeze(-1)
|
105 |
+
|
106 |
+
t_idx_BxTxC = torch.minimum(
|
107 |
+
t_idx_BT1 + delay_arr.view(1, 1, C),
|
108 |
+
torch.tensor(T - 1, device=device),
|
109 |
+
)
|
110 |
+
b_idx_BxTxC = torch.broadcast_to(torch.arange(B, device=device).view(B, 1, 1), [B, T, C])
|
111 |
+
c_idx_BxTxC = torch.broadcast_to(torch.arange(C, device=device).view(1, 1, C), [B, T, C])
|
112 |
+
|
113 |
+
indices_BTCx3 = torch.stack(
|
114 |
+
[
|
115 |
+
b_idx_BxTxC.reshape(-1),
|
116 |
+
t_idx_BxTxC.reshape(-1),
|
117 |
+
c_idx_BxTxC.reshape(-1),
|
118 |
+
],
|
119 |
+
axis=1,
|
120 |
+
).long() # Ensure indices are long type
|
121 |
+
|
122 |
+
return t_idx_BxTxC, indices_BTCx3
|
123 |
+
|
124 |
+
|
125 |
+
def revert_audio_delay(
|
126 |
+
audio_BxTxC: torch.Tensor,
|
127 |
+
pad_value: int,
|
128 |
+
precomp: tp.Tuple[torch.Tensor, torch.Tensor],
|
129 |
+
T: int,
|
130 |
+
) -> torch.Tensor:
|
131 |
+
"""
|
132 |
+
Reverts a delay pattern from batched audio tokens using precomputed indices (PyTorch version).
|
133 |
+
|
134 |
+
Args:
|
135 |
+
audio_BxTxC: Input delayed audio tensor
|
136 |
+
pad_value: Padding value for out-of-bounds indices
|
137 |
+
precomp: Precomputed revert indices tuple containing:
|
138 |
+
- t_idx_BxTxC: Time offset indices tensor
|
139 |
+
- indices_BTCx3: Gather indices tensor for original audio
|
140 |
+
T: Original sequence length before padding
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
Reverted audio tensor with same shape as input
|
144 |
+
"""
|
145 |
+
t_idx_BxTxC, indices_BTCx3 = precomp
|
146 |
+
device = audio_BxTxC.device # Get device from input tensor
|
147 |
+
|
148 |
+
# Move precomputed indices to the same device as audio_BxTxC if they aren't already
|
149 |
+
t_idx_BxTxC = t_idx_BxTxC.to(device)
|
150 |
+
indices_BTCx3 = indices_BTCx3.to(device)
|
151 |
+
|
152 |
+
# Using PyTorch advanced indexing (equivalent to tf.gather_nd or np equivalent)
|
153 |
+
gathered_flat = audio_BxTxC[indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]]
|
154 |
+
gathered_BxTxC = gathered_flat.view(audio_BxTxC.size()) # Use .size() for robust reshaping
|
155 |
+
|
156 |
+
# Create pad_tensor on the correct device
|
157 |
+
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
|
158 |
+
# Create T tensor on the correct device for comparison
|
159 |
+
T_tensor = torch.tensor(T, device=device)
|
160 |
+
|
161 |
+
result_BxTxC = torch.where(t_idx_BxTxC >= T_tensor, pad_tensor, gathered_BxTxC) # Changed np.where to torch.where
|
162 |
+
|
163 |
+
return result_BxTxC
|
config.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Configuration management module for the Dia model.
|
2 |
+
|
3 |
+
This module provides comprehensive configuration management for the Dia model,
|
4 |
+
utilizing Pydantic for validation. It defines configurations for data processing,
|
5 |
+
model architecture (encoder and decoder), and training settings.
|
6 |
+
|
7 |
+
Key components:
|
8 |
+
- DataConfig: Parameters for data loading and preprocessing.
|
9 |
+
- EncoderConfig: Architecture details for the encoder module.
|
10 |
+
- DecoderConfig: Architecture details for the decoder module.
|
11 |
+
- ModelConfig: Combined model architecture settings.
|
12 |
+
- TrainingConfig: Training hyperparameters and settings.
|
13 |
+
- DiaConfig: Master configuration combining all components.
|
14 |
+
"""
|
15 |
+
|
16 |
+
import os
|
17 |
+
|
18 |
+
from pydantic import BaseModel, Field
|
19 |
+
|
20 |
+
|
21 |
+
class EncoderConfig(BaseModel, frozen=True):
|
22 |
+
"""Configuration for the encoder component of the Dia model.
|
23 |
+
|
24 |
+
Attributes:
|
25 |
+
model_type: Type of the model, defaults to "dia_encoder".
|
26 |
+
hidden_size: Size of the encoder layers, defaults to 1024.
|
27 |
+
intermediate_size: Size of the "intermediate" (i.e., feed-forward) layer in the encoder, defaults to 4096.
|
28 |
+
num_hidden_layers: Number of hidden layers in the encoder, defaults to 12.
|
29 |
+
num_attention_heads: Number of attention heads in the encoder, defaults to 16.
|
30 |
+
num_key_value_heads: Number of key-value heads in the encoder, defaults to 16.
|
31 |
+
head_dim: Dimension of each attention head, defaults to 128.
|
32 |
+
hidden_act: Activation function in the encoder, defaults to "silu".
|
33 |
+
max_position_embeddings: Maximum number of position embeddings, defaults to 1024.
|
34 |
+
initializer_range: Range for initializing weights, defaults to 0.02.
|
35 |
+
norm_eps: Epsilon value for normalization layers, defaults to 1e-5.
|
36 |
+
rope_theta: Theta value for RoPE, defaults to 10000.0.
|
37 |
+
rope_scaling: Optional scaling factor for RoPE.
|
38 |
+
vocab_size: Vocabulary size, defaults to 256.
|
39 |
+
"""
|
40 |
+
|
41 |
+
head_dim: int = Field(default=128, gt=0)
|
42 |
+
hidden_act: str = Field(default="silu")
|
43 |
+
hidden_size: int = Field(default=1024, gt=0)
|
44 |
+
initializer_range: float = Field(default=0.02)
|
45 |
+
intermediate_size: int = Field(default=4096, gt=0)
|
46 |
+
max_position_embeddings: int = Field(default=1024, gt=0)
|
47 |
+
model_type: str = Field(default="dia_encoder")
|
48 |
+
norm_eps: float = Field(default=1e-5)
|
49 |
+
num_attention_heads: int = Field(default=16, gt=0)
|
50 |
+
num_hidden_layers: int = Field(default=12, gt=0)
|
51 |
+
num_key_value_heads: int = Field(default=16, gt=0)
|
52 |
+
rope_scaling: float | None = Field(default=None)
|
53 |
+
rope_theta: float = Field(default=10000.0)
|
54 |
+
vocab_size: int = Field(default=256, gt=0)
|
55 |
+
|
56 |
+
|
57 |
+
class DecoderConfig(BaseModel, frozen=True):
|
58 |
+
"""Configuration for the decoder component of the Dia model.
|
59 |
+
|
60 |
+
Attributes:
|
61 |
+
model_type: Type of the model, defaults to "dia_decoder".
|
62 |
+
hidden_size: Size of the decoder layers, defaults to 2048.
|
63 |
+
intermediate_size: Size of the "intermediate" (i.e., feed-forward) layer in the decoder, defaults to 8192.
|
64 |
+
num_hidden_layers: Number of hidden layers in the decoder, defaults to 18.
|
65 |
+
num_attention_heads: Number of attention heads in the decoder, defaults to 16.
|
66 |
+
num_key_value_heads: Number of key-value heads in the decoder, defaults to 4.
|
67 |
+
head_dim: Dimension of each attention head, defaults to 128.
|
68 |
+
cross_hidden_size: Size of the cross-attention layers, defaults to 1024.
|
69 |
+
cross_num_attention_heads: Number of attention heads in the cross-attention mechanism, defaults to 16.
|
70 |
+
cross_num_key_value_heads: Number of key-value heads in the cross-attention mechanism, defaults to 16.
|
71 |
+
cross_head_dim: Dimension of each cross-attention head, defaults to 128.
|
72 |
+
hidden_act: Activation function in the decoder, defaults to "silu".
|
73 |
+
max_position_embeddings: Maximum number of position embeddings in the decoder, defaults to 3072.
|
74 |
+
initializer_range: Range for initializing weights in the decoder, defaults to 0.02.
|
75 |
+
norm_eps: Epsilon value for normalization layers in the decoder, defaults to 1e-5.
|
76 |
+
rope_theta: Theta value for RoPE in the decoder, defaults to 10000.0.
|
77 |
+
rope_scaling: Optional scaling factor for RoPE in the decoder.
|
78 |
+
vocab_size: Vocabulary size for the decoder, defaults to 1028.
|
79 |
+
num_channels: Number of channels in the decoder, defaults to 9.
|
80 |
+
"""
|
81 |
+
|
82 |
+
cross_head_dim: int = Field(default=128, gt=0)
|
83 |
+
cross_hidden_size: int = Field(default=1024, gt=0)
|
84 |
+
cross_num_attention_heads: int = Field(default=16, gt=0)
|
85 |
+
cross_num_key_value_heads: int = Field(default=16, gt=0)
|
86 |
+
head_dim: int = Field(default=128, gt=0)
|
87 |
+
hidden_act: str = Field(default="silu")
|
88 |
+
hidden_size: int = Field(default=2048, gt=0)
|
89 |
+
initializer_range: float = Field(default=0.02)
|
90 |
+
intermediate_size: int = Field(default=8192, gt=0)
|
91 |
+
max_position_embeddings: int = Field(default=3072, gt=0)
|
92 |
+
model_type: str = Field(default="dia_decoder")
|
93 |
+
norm_eps: float = Field(default=1e-5)
|
94 |
+
num_attention_heads: int = Field(default=16, gt=0)
|
95 |
+
num_channels: int = Field(default=9, gt=0)
|
96 |
+
num_hidden_layers: int = Field(default=18, gt=0)
|
97 |
+
num_key_value_heads: int = Field(default=4, gt=0)
|
98 |
+
rope_scaling: float | None = Field(default=None)
|
99 |
+
rope_theta: float = Field(default=10000.0)
|
100 |
+
vocab_size: int = Field(default=1028, gt=0)
|
101 |
+
|
102 |
+
|
103 |
+
class DiaConfig(BaseModel, frozen=True):
|
104 |
+
"""Main configuration container for the Dia model architecture.
|
105 |
+
|
106 |
+
Attributes:
|
107 |
+
model_type: Type of the model, defaults to "dia".
|
108 |
+
is_encoder_decoder: Flag indicating if the model is an encoder-decoder type, defaults to True.
|
109 |
+
encoder: Configuration for the encoder component.
|
110 |
+
decoder: Configuration for the decoder component.
|
111 |
+
src_vocab_size: Size of the source (text) vocabulary.
|
112 |
+
tgt_vocab_size: Size of the target (audio code) vocabulary.
|
113 |
+
initializer_range: Range for initializing weights, defaults to 0.02.
|
114 |
+
norm_eps: Epsilon value for normalization layers, defaults to 1e-5.
|
115 |
+
torch_dtype: Data type for model weights in PyTorch, defaults to "float32".
|
116 |
+
bos_token_id: Beginning-of-sequence token ID, defaults to 1026.
|
117 |
+
eos_token_id: End-of-sequence token ID, defaults to 1024.
|
118 |
+
pad_token_id: Padding token ID, defaults to 1025.
|
119 |
+
rope_theta: Theta value for RoPE, defaults to 10000.0.
|
120 |
+
rope_scaling: Optional scaling factor for RoPE.
|
121 |
+
transformers_version: Version of the transformers library, defaults to "4.53.0.dev0".
|
122 |
+
architectures: List of model architectures, defaults to ["DiaForConditionalGeneration"].
|
123 |
+
delay_pattern: List of delay values for each audio channel, defaults to [0,8,9,10,11,12,13,14,15].
|
124 |
+
"""
|
125 |
+
|
126 |
+
architectures: list[str] = Field(default_factory=lambda: ["DiaForConditionalGeneration"])
|
127 |
+
bos_token_id: int = Field(default=1026)
|
128 |
+
decoder_config: DecoderConfig
|
129 |
+
delay_pattern: list[int] = Field(default_factory=lambda: [0, 8, 9, 10, 11, 12, 13, 14, 15])
|
130 |
+
encoder_config: EncoderConfig
|
131 |
+
eos_token_id: int = Field(default=1024)
|
132 |
+
initializer_range: float = Field(default=0.02)
|
133 |
+
is_encoder_decoder: bool = Field(default=True)
|
134 |
+
model_type: str = Field(default="dia")
|
135 |
+
norm_eps: float = Field(default=1e-5)
|
136 |
+
pad_token_id: int = Field(default=1025)
|
137 |
+
torch_dtype: str = Field(default="float32")
|
138 |
+
transformers_version: str = Field(default="4.53.0.dev0")
|
139 |
+
|
140 |
+
def save(self, path: str) -> None:
|
141 |
+
"""Save the current configuration instance to a JSON file.
|
142 |
+
|
143 |
+
Ensures the parent directory exists and the file has a .json extension.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
path: The target file path to save the configuration.
|
147 |
+
|
148 |
+
Raises:
|
149 |
+
ValueError: If the path is not a file with a .json extension.
|
150 |
+
"""
|
151 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
152 |
+
config_json = self.model_dump_json(indent=2)
|
153 |
+
with open(path, "w") as f:
|
154 |
+
f.write(config_json)
|
155 |
+
|
156 |
+
@classmethod
|
157 |
+
def load(cls, path: str) -> "DiaConfig | None":
|
158 |
+
"""Load and validate a Dia configuration from a JSON file.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
path: The path to the configuration file.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
A validated DiaConfig instance if the file exists and is valid,
|
165 |
+
otherwise None if the file is not found.
|
166 |
+
|
167 |
+
Raises:
|
168 |
+
ValueError: If the path does not point to an existing .json file.
|
169 |
+
pydantic.ValidationError: If the JSON content fails validation against the DiaConfig schema.
|
170 |
+
"""
|
171 |
+
try:
|
172 |
+
with open(path, "r") as f:
|
173 |
+
content = f.read()
|
174 |
+
return cls.model_validate_json(content)
|
175 |
+
except FileNotFoundError:
|
176 |
+
return None
|
layers.py
ADDED
@@ -0,0 +1,888 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from huggingface_hub import PyTorchModelHubMixin
|
5 |
+
from torch import Tensor
|
6 |
+
from torch.nn import RMSNorm
|
7 |
+
|
8 |
+
from .config import DecoderConfig, DiaConfig, EncoderConfig
|
9 |
+
from .state import DecoderInferenceState, EncoderInferenceState, KVCache
|
10 |
+
|
11 |
+
|
12 |
+
def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
|
13 |
+
return tuple(ax if ax >= 0 else ndim + ax for ax in axes)
|
14 |
+
|
15 |
+
|
16 |
+
class DenseGeneral(nn.Module):
|
17 |
+
"""
|
18 |
+
PyTorch equivalent of flax.linen.DenseGeneral with shapes defined at init.
|
19 |
+
Stores weights (`kernel`) in the same layout as Jax and uses torch.tensordot
|
20 |
+
for the generalized matrix multiplication. Weight/bias shapes are calculated
|
21 |
+
and parameters created during initialization based on config.
|
22 |
+
`load_weights` validates shapes and copies data.
|
23 |
+
Attributes:
|
24 |
+
axis (Tuple[int, ...]): Input axis or axes to contract.
|
25 |
+
in_shapes (Tuple[int, ...]): Sizes of the input dimensions specified by `axis`.
|
26 |
+
out_features (Tuple[int, ...]): Shape of the output features (non-contracted dims).
|
27 |
+
use_bias (bool): Whether to add a bias term.
|
28 |
+
weight (nn.Parameter): The kernel parameter.
|
29 |
+
bias (Optional[nn.Parameter]): The bias parameter (if use_bias=True).
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
in_shapes: tuple[int, ...],
|
35 |
+
out_features: tuple[int, ...],
|
36 |
+
axis: tuple[int, ...] = (-1,),
|
37 |
+
weight_dtype: torch.dtype | None = None,
|
38 |
+
device: torch.device | None = None,
|
39 |
+
):
|
40 |
+
super().__init__()
|
41 |
+
self.in_shapes = in_shapes
|
42 |
+
self.out_features = out_features
|
43 |
+
self.axis = axis
|
44 |
+
self.kernel_shape = self.in_shapes + self.out_features
|
45 |
+
|
46 |
+
factory_kwargs = {"device": device, "dtype": weight_dtype}
|
47 |
+
self.weight = nn.Parameter(torch.empty(self.kernel_shape, **factory_kwargs))
|
48 |
+
|
49 |
+
def forward(self, inputs: Tensor) -> Tensor:
|
50 |
+
norm_axis = _normalize_axes(self.axis, inputs.ndim)
|
51 |
+
kernel_contract_axes = tuple(range(len(norm_axis)))
|
52 |
+
|
53 |
+
output = torch.tensordot(
|
54 |
+
inputs.to(self.weight.dtype),
|
55 |
+
self.weight,
|
56 |
+
dims=(norm_axis, kernel_contract_axes),
|
57 |
+
).to(inputs.dtype)
|
58 |
+
return output
|
59 |
+
|
60 |
+
|
61 |
+
class MlpBlock(nn.Module):
|
62 |
+
"""MLP block using DenseGeneral."""
|
63 |
+
|
64 |
+
def __init__(self, embed_dim: int, intermediate_dim: int, compute_dtype: torch.dtype):
|
65 |
+
super().__init__()
|
66 |
+
self.dtype = compute_dtype
|
67 |
+
|
68 |
+
self.wi_fused = DenseGeneral(
|
69 |
+
in_shapes=(embed_dim,),
|
70 |
+
out_features=(2, intermediate_dim),
|
71 |
+
axis=(-1,),
|
72 |
+
weight_dtype=compute_dtype,
|
73 |
+
)
|
74 |
+
|
75 |
+
self.wo = DenseGeneral(
|
76 |
+
in_shapes=(intermediate_dim,),
|
77 |
+
out_features=(embed_dim,),
|
78 |
+
axis=(-1,),
|
79 |
+
weight_dtype=compute_dtype,
|
80 |
+
)
|
81 |
+
|
82 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
83 |
+
"""Forward pass."""
|
84 |
+
fused_x = self.wi_fused(x)
|
85 |
+
|
86 |
+
gate = fused_x[..., 0, :]
|
87 |
+
up = fused_x[..., 1, :]
|
88 |
+
|
89 |
+
hidden = torch.mul(F.silu(gate), up).to(self.dtype)
|
90 |
+
|
91 |
+
output = self.wo(hidden)
|
92 |
+
return output
|
93 |
+
|
94 |
+
|
95 |
+
class RotaryEmbedding(nn.Module):
|
96 |
+
"""Rotary Position Embedding (RoPE) implementation in PyTorch."""
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
embedding_dims: int,
|
101 |
+
min_timescale: float = 1.0,
|
102 |
+
max_timescale: float = 10000.0,
|
103 |
+
dtype: torch.dtype = torch.float32,
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
if embedding_dims % 2 != 0:
|
107 |
+
raise ValueError("Embedding dim must be even for RoPE.")
|
108 |
+
self.embedding_dims = embedding_dims
|
109 |
+
self.min_timescale = min_timescale
|
110 |
+
self.max_timescale = max_timescale
|
111 |
+
self.compute_dtype = dtype
|
112 |
+
|
113 |
+
half_embedding_dim = embedding_dims // 2
|
114 |
+
fraction = (2.0 * torch.arange(0, half_embedding_dim)) / embedding_dims
|
115 |
+
timescale = (self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction).to(torch.float32)
|
116 |
+
self.register_buffer("timescale", timescale, persistent=False)
|
117 |
+
|
118 |
+
def forward(self, inputs: torch.Tensor, position: torch.Tensor):
|
119 |
+
"""Applies RoPE."""
|
120 |
+
position = position.unsqueeze(-1).unsqueeze(-1)
|
121 |
+
sinusoid_inp = position / self.timescale
|
122 |
+
sin = torch.sin(sinusoid_inp)
|
123 |
+
cos = torch.cos(sinusoid_inp)
|
124 |
+
first_half, second_half = torch.chunk(inputs.to(torch.float32), 2, dim=-1)
|
125 |
+
first_part = first_half * cos - second_half * sin
|
126 |
+
second_part = second_half * cos + first_half * sin
|
127 |
+
return torch.cat(
|
128 |
+
(first_part.to(self.compute_dtype), second_part.to(self.compute_dtype)),
|
129 |
+
dim=-1,
|
130 |
+
)
|
131 |
+
|
132 |
+
def apply_rope(self, inputs: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor):
|
133 |
+
first_half, second_half = torch.chunk(inputs.to(torch.float32), 2, dim=-1)
|
134 |
+
first_part = first_half * cos - second_half * sin
|
135 |
+
second_part = second_half * cos + first_half * sin
|
136 |
+
return torch.cat((first_part.to(self.compute_dtype), second_part.to(self.compute_dtype)), dim=-1)
|
137 |
+
|
138 |
+
|
139 |
+
def custom_scaled_dot_product_attention(
|
140 |
+
query: torch.Tensor,
|
141 |
+
key: torch.Tensor,
|
142 |
+
value: torch.Tensor,
|
143 |
+
attn_mask: torch.Tensor | None = None,
|
144 |
+
scale: float = 1.0,
|
145 |
+
is_causal: bool = False,
|
146 |
+
num_gqa_groups: int = 1,
|
147 |
+
) -> torch.Tensor:
|
148 |
+
"""
|
149 |
+
Custom scaled dot-product attention with GQA support for MPS compatibility.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
query: (B, N_q, T, H) - Query tensor, N_q = num_query_heads
|
153 |
+
key: (B, N_kv, S, H) - Key tensor, N_kv = num_kv_heads
|
154 |
+
value: (B, N_kv, S, H) - Value tensor
|
155 |
+
attn_mask: (B, 1, T, S) - Attention mask, optional
|
156 |
+
scale: Scaling factor for attention scores
|
157 |
+
is_causal: If True, apply causal masking
|
158 |
+
num_gqa_groups: Number of query groups per KV head (N_q / N_kv)
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
output: (B, N_q, T, H) - Attention output
|
162 |
+
"""
|
163 |
+
B, N_q, T, H = query.shape
|
164 |
+
_, N_kv, S, _ = key.shape
|
165 |
+
|
166 |
+
# For GQA, repeat key and value tensors to match query heads
|
167 |
+
if num_gqa_groups > 1:
|
168 |
+
key = key.repeat_interleave(num_gqa_groups, dim=1) # (B, N_q, S, H)
|
169 |
+
value = value.repeat_interleave(num_gqa_groups, dim=1) # (B, N_q, S, H)
|
170 |
+
|
171 |
+
# Compute attention scores: (B, N_q, T, H) @ (B, N_q, H, S) -> (B, N_q, T, S)
|
172 |
+
scores = torch.matmul(query, key.transpose(-1, -2)) * scale
|
173 |
+
|
174 |
+
# Apply causal mask if needed
|
175 |
+
if is_causal:
|
176 |
+
causal_mask = torch.tril(torch.ones(T, S, dtype=torch.bool, device=query.device))
|
177 |
+
scores = scores.masked_fill(~causal_mask, float("-inf"))
|
178 |
+
|
179 |
+
# Apply attention mask if provided
|
180 |
+
if attn_mask is not None:
|
181 |
+
scores = scores.masked_fill(~attn_mask, float("-inf"))
|
182 |
+
|
183 |
+
# Softmax over the last dimension (S)
|
184 |
+
attn_weights = F.softmax(scores, dim=-1)
|
185 |
+
|
186 |
+
# Compute output: (B, N_q, T, S) @ (B, N_q, S, H) -> (B, N_q, T, H)
|
187 |
+
output = torch.matmul(attn_weights, value)
|
188 |
+
|
189 |
+
return output
|
190 |
+
|
191 |
+
|
192 |
+
class CrossAttention(nn.Module):
|
193 |
+
"""Cross-Attention using DenseGeneral."""
|
194 |
+
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
config: EncoderConfig | DecoderConfig,
|
198 |
+
q_embed_dim: int,
|
199 |
+
kv_embed_dim: int,
|
200 |
+
num_query_heads: int,
|
201 |
+
num_kv_heads: int,
|
202 |
+
head_dim: int,
|
203 |
+
compute_dtype: torch.dtype,
|
204 |
+
out_embed_dim: int | None = None,
|
205 |
+
):
|
206 |
+
super().__init__()
|
207 |
+
self.num_query_heads = num_query_heads
|
208 |
+
self.num_kv_heads = num_kv_heads
|
209 |
+
self.head_dim = head_dim
|
210 |
+
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
|
211 |
+
self.projected_query_dim = num_query_heads * head_dim
|
212 |
+
if num_query_heads % num_kv_heads != 0:
|
213 |
+
raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
|
214 |
+
self.num_gqa_groups = num_query_heads // num_kv_heads
|
215 |
+
|
216 |
+
# --- Projection Layers using DenseGeneral ---
|
217 |
+
self.q_proj = DenseGeneral(
|
218 |
+
in_shapes=(q_embed_dim,),
|
219 |
+
out_features=(num_query_heads, head_dim),
|
220 |
+
axis=(-1,),
|
221 |
+
weight_dtype=compute_dtype,
|
222 |
+
)
|
223 |
+
self.k_proj = DenseGeneral(
|
224 |
+
in_shapes=(kv_embed_dim,),
|
225 |
+
out_features=(num_kv_heads, head_dim),
|
226 |
+
axis=(-1,),
|
227 |
+
weight_dtype=compute_dtype,
|
228 |
+
)
|
229 |
+
self.v_proj = DenseGeneral(
|
230 |
+
in_shapes=(kv_embed_dim,),
|
231 |
+
out_features=(num_kv_heads, head_dim),
|
232 |
+
axis=(-1,),
|
233 |
+
weight_dtype=compute_dtype,
|
234 |
+
)
|
235 |
+
self.o_proj = DenseGeneral(
|
236 |
+
in_shapes=(num_query_heads, head_dim),
|
237 |
+
out_features=(self.output_dim,),
|
238 |
+
axis=(-2, -1),
|
239 |
+
weight_dtype=compute_dtype,
|
240 |
+
)
|
241 |
+
|
242 |
+
# --- Rotary Embedding ---
|
243 |
+
self.rotary_emb = RotaryEmbedding(
|
244 |
+
embedding_dims=self.head_dim,
|
245 |
+
max_timescale=config.rope_theta,
|
246 |
+
dtype=compute_dtype,
|
247 |
+
)
|
248 |
+
|
249 |
+
def forward(
|
250 |
+
self,
|
251 |
+
Xq: torch.Tensor, # (B, T, D) T = 1 in AR generation
|
252 |
+
q_positions: torch.Tensor, # (B, T)
|
253 |
+
kv_positions: torch.Tensor | None = None, # (B, S)
|
254 |
+
attn_mask: torch.Tensor | None = None, # None in Decoder Self Attention, Valid mask in Others
|
255 |
+
cache: KVCache | None = None, # None in Encoder, KVCache in Decoder
|
256 |
+
is_causal: bool = False,
|
257 |
+
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
|
258 |
+
"""
|
259 |
+
Performs attention calculation with optional KV caching.
|
260 |
+
|
261 |
+
Args:
|
262 |
+
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
|
263 |
+
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
|
264 |
+
q_positions: Positions for queries (B, T).
|
265 |
+
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
|
266 |
+
attn_mask: Attention mask.
|
267 |
+
cache: KVCache.
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
A tuple containing:
|
271 |
+
- output: The attention output tensor (B, T, output_dim).
|
272 |
+
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
|
273 |
+
"""
|
274 |
+
if kv_positions is None:
|
275 |
+
kv_positions = q_positions
|
276 |
+
original_dtype = Xq.dtype
|
277 |
+
|
278 |
+
Xq_BxTxNxH = self.q_proj(Xq)
|
279 |
+
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
|
280 |
+
|
281 |
+
attn_k: torch.Tensor | None = cache.k if cache is not None else None
|
282 |
+
attn_v: torch.Tensor | None = cache.v if cache is not None else None
|
283 |
+
|
284 |
+
# Use custom attention for MPS backend, otherwise use optimized PyTorch function
|
285 |
+
is_mps = Xq.device.type == "mps" and torch.backends.mps.is_available()
|
286 |
+
if is_mps:
|
287 |
+
attn_output = custom_scaled_dot_product_attention(
|
288 |
+
query=Xq_BxNxTxH,
|
289 |
+
key=attn_k,
|
290 |
+
value=attn_v,
|
291 |
+
attn_mask=attn_mask if not is_causal else None,
|
292 |
+
scale=1.0,
|
293 |
+
is_causal=is_causal,
|
294 |
+
num_gqa_groups=self.num_gqa_groups,
|
295 |
+
)
|
296 |
+
else:
|
297 |
+
attn_output = F.scaled_dot_product_attention(
|
298 |
+
Xq_BxNxTxH,
|
299 |
+
attn_k,
|
300 |
+
attn_v,
|
301 |
+
attn_mask=attn_mask if not is_causal else None,
|
302 |
+
scale=1.0,
|
303 |
+
enable_gqa=self.num_gqa_groups > 1,
|
304 |
+
is_causal=is_causal,
|
305 |
+
)
|
306 |
+
|
307 |
+
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
|
308 |
+
output = self.o_proj(attn_output)
|
309 |
+
|
310 |
+
return output.to(original_dtype)
|
311 |
+
|
312 |
+
|
313 |
+
class FusedQKV(nn.Module):
|
314 |
+
def __init__(
|
315 |
+
self,
|
316 |
+
in_features: int,
|
317 |
+
out_features: int,
|
318 |
+
bias: bool = False,
|
319 |
+
num_q_heads: int = 1,
|
320 |
+
q_head_dim: int = 1,
|
321 |
+
num_kv_heads: int = 1,
|
322 |
+
kv_head_dim: int = 1,
|
323 |
+
):
|
324 |
+
super().__init__()
|
325 |
+
self.num_q_heads = num_q_heads
|
326 |
+
self.q_head_dim = q_head_dim
|
327 |
+
self.num_kv_heads = num_kv_heads
|
328 |
+
self.kv_head_dim = kv_head_dim
|
329 |
+
self.q_output_dim = num_q_heads * q_head_dim
|
330 |
+
self.kv_output_dim = num_kv_heads * kv_head_dim
|
331 |
+
self.linear = nn.Linear(in_features, out_features, bias=bias)
|
332 |
+
|
333 |
+
def forward(self, inputs: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
334 |
+
x = self.linear(inputs)
|
335 |
+
|
336 |
+
q, k, v = x.split([self.q_output_dim, self.kv_output_dim, self.kv_output_dim], dim=-1)
|
337 |
+
|
338 |
+
q = q.reshape(q.shape[:-1] + (self.num_q_heads, self.q_head_dim))
|
339 |
+
k = k.reshape(k.shape[:-1] + (self.num_kv_heads, self.kv_head_dim))
|
340 |
+
v = v.reshape(v.shape[:-1] + (self.num_kv_heads, self.kv_head_dim))
|
341 |
+
|
342 |
+
return q, k, v
|
343 |
+
|
344 |
+
|
345 |
+
class SelfAttention(nn.Module):
|
346 |
+
"""Attention using DenseGeneral."""
|
347 |
+
|
348 |
+
def __init__(
|
349 |
+
self,
|
350 |
+
config: EncoderConfig | DecoderConfig,
|
351 |
+
q_embed_dim: int,
|
352 |
+
kv_embed_dim: int,
|
353 |
+
num_query_heads: int,
|
354 |
+
num_kv_heads: int,
|
355 |
+
head_dim: int,
|
356 |
+
compute_dtype: torch.dtype,
|
357 |
+
out_embed_dim: int | None = None,
|
358 |
+
):
|
359 |
+
super().__init__()
|
360 |
+
self.num_query_heads = num_query_heads
|
361 |
+
self.num_kv_heads = num_kv_heads
|
362 |
+
self.head_dim = head_dim
|
363 |
+
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
|
364 |
+
self.projected_query_dim = num_query_heads * head_dim
|
365 |
+
if num_query_heads % num_kv_heads != 0:
|
366 |
+
raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
|
367 |
+
self.num_gqa_groups = num_query_heads // num_kv_heads
|
368 |
+
self.kv_embed_dim = kv_embed_dim
|
369 |
+
self.q_embed_dim = q_embed_dim
|
370 |
+
|
371 |
+
# --- Projection Layers using DenseGeneral ---
|
372 |
+
self.q_proj = DenseGeneral(
|
373 |
+
in_shapes=(q_embed_dim,),
|
374 |
+
out_features=(num_query_heads, head_dim),
|
375 |
+
axis=(-1,),
|
376 |
+
weight_dtype=compute_dtype,
|
377 |
+
)
|
378 |
+
self.k_proj = DenseGeneral(
|
379 |
+
in_shapes=(kv_embed_dim,),
|
380 |
+
out_features=(num_kv_heads, head_dim),
|
381 |
+
axis=(-1,),
|
382 |
+
weight_dtype=compute_dtype,
|
383 |
+
)
|
384 |
+
self.v_proj = DenseGeneral(
|
385 |
+
in_shapes=(kv_embed_dim,),
|
386 |
+
out_features=(num_kv_heads, head_dim),
|
387 |
+
axis=(-1,),
|
388 |
+
weight_dtype=compute_dtype,
|
389 |
+
)
|
390 |
+
self.o_proj = DenseGeneral(
|
391 |
+
in_shapes=(num_query_heads, head_dim),
|
392 |
+
out_features=(self.output_dim,),
|
393 |
+
axis=(-2, -1),
|
394 |
+
weight_dtype=compute_dtype,
|
395 |
+
)
|
396 |
+
|
397 |
+
# --- Rotary Embedding ---
|
398 |
+
self.rotary_emb = RotaryEmbedding(
|
399 |
+
embedding_dims=self.head_dim,
|
400 |
+
max_timescale=config.rope_theta,
|
401 |
+
dtype=compute_dtype,
|
402 |
+
)
|
403 |
+
|
404 |
+
self.is_fused_qkv = False
|
405 |
+
|
406 |
+
def get_linear_weight(self, dense: DenseGeneral):
|
407 |
+
W_dg = dense.weight.data
|
408 |
+
|
409 |
+
out_features = 1
|
410 |
+
input_features = 1
|
411 |
+
for dim in dense.out_features:
|
412 |
+
out_features *= dim
|
413 |
+
for dim in dense.in_shapes:
|
414 |
+
input_features *= dim
|
415 |
+
|
416 |
+
W_dg_reshaped_for_linear_T = W_dg.reshape(input_features, out_features)
|
417 |
+
linear_weight = W_dg_reshaped_for_linear_T.transpose(0, 1).contiguous()
|
418 |
+
return linear_weight
|
419 |
+
|
420 |
+
def patch_fused_qkv(self):
|
421 |
+
q_proj_weight = self.get_linear_weight(self.q_proj)
|
422 |
+
k_proj_weight = self.get_linear_weight(self.k_proj)
|
423 |
+
v_proj_weight = self.get_linear_weight(self.v_proj)
|
424 |
+
|
425 |
+
self.qkv = FusedQKV(
|
426 |
+
self.kv_embed_dim,
|
427 |
+
(self.num_query_heads * self.head_dim + 2 * (self.num_kv_heads * self.head_dim)),
|
428 |
+
bias=False,
|
429 |
+
num_q_heads=self.num_query_heads,
|
430 |
+
q_head_dim=self.head_dim,
|
431 |
+
num_kv_heads=self.num_kv_heads,
|
432 |
+
kv_head_dim=self.head_dim,
|
433 |
+
)
|
434 |
+
self.qkv.linear.weight.data = torch.cat([q_proj_weight, k_proj_weight, v_proj_weight], dim=0)
|
435 |
+
|
436 |
+
# print(f"qkv.weight.shape: {self.qkv.linear.weight.shape}")
|
437 |
+
self.is_fused_qkv = True
|
438 |
+
|
439 |
+
def forward(
|
440 |
+
self,
|
441 |
+
X: torch.Tensor, # (B, T, D) T = 1 in AR generation
|
442 |
+
q_positions: torch.Tensor, # (B, T)
|
443 |
+
kv_positions: torch.Tensor | None = None, # (B, S)
|
444 |
+
attn_mask: torch.Tensor | None = None, # None in Decoder Self Attention, Valid mask in Others
|
445 |
+
cache: KVCache | None = None, # None in Encoder, KVCache in Decoder
|
446 |
+
prefill: bool = False,
|
447 |
+
is_causal: bool = False,
|
448 |
+
current_idx: torch.Tensor | None = None,
|
449 |
+
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
|
450 |
+
"""
|
451 |
+
Performs attention calculation with optional KV caching.
|
452 |
+
Args:
|
453 |
+
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
|
454 |
+
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
|
455 |
+
q_positions: Positions for queries (B, T).
|
456 |
+
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
|
457 |
+
attn_mask: Attention mask.
|
458 |
+
cache: KVCache.
|
459 |
+
prefill: If True, use prefill mode.
|
460 |
+
Returns:
|
461 |
+
A tuple containing:
|
462 |
+
- output: The attention output tensor (B, T, output_dim).
|
463 |
+
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
|
464 |
+
"""
|
465 |
+
if kv_positions is None:
|
466 |
+
kv_positions = q_positions
|
467 |
+
|
468 |
+
original_dtype = X.dtype
|
469 |
+
|
470 |
+
if self.is_fused_qkv:
|
471 |
+
Xq_BxTxNxH, Xk_BxSxKxH, Xv_BxSxKxH = self.qkv(X)
|
472 |
+
else:
|
473 |
+
Xq_BxTxNxH = self.q_proj(X)
|
474 |
+
Xk_BxSxKxH = self.k_proj(X)
|
475 |
+
Xv_BxSxKxH = self.v_proj(X)
|
476 |
+
|
477 |
+
position = q_positions.unsqueeze(-1).unsqueeze(-1)
|
478 |
+
sinusoid_inp = position / self.rotary_emb.timescale
|
479 |
+
sin = torch.sin(sinusoid_inp)
|
480 |
+
cos = torch.cos(sinusoid_inp)
|
481 |
+
|
482 |
+
Xq_BxTxNxH = self.rotary_emb.apply_rope(Xq_BxTxNxH, sin, cos)
|
483 |
+
Xk_BxSxKxH = self.rotary_emb.apply_rope(Xk_BxSxKxH, sin, cos)
|
484 |
+
|
485 |
+
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
|
486 |
+
|
487 |
+
attn_k: torch.Tensor | None = cache.k if cache is not None else None
|
488 |
+
attn_v: torch.Tensor | None = cache.v if cache is not None else None
|
489 |
+
|
490 |
+
Xk_BxKxSxH = Xk_BxSxKxH.transpose(1, 2) # (B, K, S, H)
|
491 |
+
Xv_BxKxSxH = Xv_BxSxKxH.transpose(1, 2) # (B, K, S, H)
|
492 |
+
|
493 |
+
if cache is None:
|
494 |
+
attn_k = Xk_BxKxSxH
|
495 |
+
attn_v = Xv_BxKxSxH
|
496 |
+
elif prefill:
|
497 |
+
attn_k, attn_v = Xk_BxKxSxH, Xv_BxKxSxH
|
498 |
+
cache.prefill(attn_k, attn_v)
|
499 |
+
else:
|
500 |
+
attn_k, attn_v = cache.update(Xk_BxKxSxH, Xv_BxKxSxH, current_idx)
|
501 |
+
|
502 |
+
# Use custom attention for MPS backend, otherwise use optimized PyTorch function
|
503 |
+
is_mps = Xv_BxSxKxH.device.type == "mps" and torch.backends.mps.is_available()
|
504 |
+
if is_mps:
|
505 |
+
attn_output = custom_scaled_dot_product_attention(
|
506 |
+
query=Xq_BxNxTxH,
|
507 |
+
key=attn_k,
|
508 |
+
value=attn_v,
|
509 |
+
attn_mask=attn_mask if not is_causal else None,
|
510 |
+
scale=1.0,
|
511 |
+
is_causal=is_causal,
|
512 |
+
num_gqa_groups=self.num_gqa_groups,
|
513 |
+
)
|
514 |
+
else:
|
515 |
+
attn_output = F.scaled_dot_product_attention(
|
516 |
+
Xq_BxNxTxH,
|
517 |
+
attn_k,
|
518 |
+
attn_v,
|
519 |
+
attn_mask=attn_mask if not is_causal else None,
|
520 |
+
scale=1.0,
|
521 |
+
enable_gqa=self.num_gqa_groups > 1,
|
522 |
+
is_causal=is_causal,
|
523 |
+
)
|
524 |
+
|
525 |
+
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
|
526 |
+
output = self.o_proj(attn_output)
|
527 |
+
|
528 |
+
return output.to(original_dtype)
|
529 |
+
|
530 |
+
|
531 |
+
class EncoderLayer(nn.Module):
|
532 |
+
"""Transformer Encoder Layer using DenseGeneral."""
|
533 |
+
|
534 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
535 |
+
super().__init__()
|
536 |
+
self.config = config
|
537 |
+
enc_config = config.encoder_config
|
538 |
+
embed_dim = enc_config.hidden_size
|
539 |
+
self.compute_dtype = compute_dtype
|
540 |
+
|
541 |
+
self.pre_sa_norm = RMSNorm(
|
542 |
+
embed_dim,
|
543 |
+
eps=enc_config.norm_eps,
|
544 |
+
dtype=torch.float32,
|
545 |
+
)
|
546 |
+
self.self_attention = SelfAttention(
|
547 |
+
enc_config,
|
548 |
+
q_embed_dim=embed_dim,
|
549 |
+
kv_embed_dim=embed_dim,
|
550 |
+
num_query_heads=enc_config.num_attention_heads,
|
551 |
+
num_kv_heads=enc_config.num_key_value_heads,
|
552 |
+
head_dim=enc_config.head_dim,
|
553 |
+
compute_dtype=compute_dtype,
|
554 |
+
out_embed_dim=embed_dim,
|
555 |
+
)
|
556 |
+
self.post_sa_norm = RMSNorm(
|
557 |
+
embed_dim,
|
558 |
+
eps=enc_config.norm_eps,
|
559 |
+
dtype=torch.float32,
|
560 |
+
)
|
561 |
+
self.mlp = MlpBlock(
|
562 |
+
embed_dim=embed_dim,
|
563 |
+
intermediate_dim=enc_config.intermediate_size,
|
564 |
+
compute_dtype=compute_dtype,
|
565 |
+
)
|
566 |
+
|
567 |
+
def forward(
|
568 |
+
self,
|
569 |
+
x: torch.Tensor,
|
570 |
+
state: EncoderInferenceState,
|
571 |
+
) -> torch.Tensor:
|
572 |
+
residual = x
|
573 |
+
x_norm = self.pre_sa_norm(x).to(self.compute_dtype)
|
574 |
+
|
575 |
+
sa_out = self.self_attention(
|
576 |
+
X=x_norm,
|
577 |
+
q_positions=state.positions,
|
578 |
+
kv_positions=state.positions,
|
579 |
+
attn_mask=state.attn_mask,
|
580 |
+
)
|
581 |
+
x = residual + sa_out
|
582 |
+
|
583 |
+
residual = x
|
584 |
+
x_norm = self.post_sa_norm(x).to(self.compute_dtype)
|
585 |
+
mlp_out = self.mlp(x_norm)
|
586 |
+
x = residual + mlp_out
|
587 |
+
|
588 |
+
return x
|
589 |
+
|
590 |
+
|
591 |
+
class Encoder(nn.Module):
|
592 |
+
"""Transformer Encoder Stack using DenseGeneral."""
|
593 |
+
|
594 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
595 |
+
super().__init__()
|
596 |
+
self.config = config
|
597 |
+
enc_config = config.encoder_config
|
598 |
+
self.compute_dtype = compute_dtype
|
599 |
+
|
600 |
+
self.embedding = nn.Embedding(
|
601 |
+
enc_config.vocab_size,
|
602 |
+
enc_config.hidden_size,
|
603 |
+
dtype=compute_dtype,
|
604 |
+
)
|
605 |
+
self.layers = nn.ModuleList([EncoderLayer(config, compute_dtype) for _ in range(enc_config.num_hidden_layers)])
|
606 |
+
self.norm = RMSNorm(
|
607 |
+
enc_config.hidden_size,
|
608 |
+
eps=enc_config.norm_eps,
|
609 |
+
dtype=torch.float32,
|
610 |
+
)
|
611 |
+
|
612 |
+
def forward(
|
613 |
+
self,
|
614 |
+
x_ids: torch.Tensor,
|
615 |
+
state: EncoderInferenceState,
|
616 |
+
) -> torch.Tensor:
|
617 |
+
x = self.embedding(x_ids)
|
618 |
+
|
619 |
+
for layer in self.layers:
|
620 |
+
x = layer(x, state)
|
621 |
+
|
622 |
+
x = self.norm(x).to(self.compute_dtype)
|
623 |
+
return x
|
624 |
+
|
625 |
+
|
626 |
+
class DecoderLayer(nn.Module):
|
627 |
+
"""Transformer Decoder Layer using DenseGeneral."""
|
628 |
+
|
629 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
630 |
+
super().__init__()
|
631 |
+
self.config = config
|
632 |
+
dec_config = config.decoder_config
|
633 |
+
enc_config = config.encoder_config
|
634 |
+
dec_embed_dim = dec_config.hidden_size
|
635 |
+
enc_embed_dim = enc_config.hidden_size
|
636 |
+
self.compute_dtype = compute_dtype
|
637 |
+
|
638 |
+
# Norms
|
639 |
+
self.pre_sa_norm = RMSNorm(
|
640 |
+
dec_embed_dim,
|
641 |
+
eps=dec_config.norm_eps,
|
642 |
+
dtype=torch.float32,
|
643 |
+
)
|
644 |
+
self.pre_ca_norm = RMSNorm(
|
645 |
+
dec_embed_dim,
|
646 |
+
eps=dec_config.norm_eps,
|
647 |
+
dtype=torch.float32,
|
648 |
+
)
|
649 |
+
self.pre_mlp_norm = RMSNorm(
|
650 |
+
dec_embed_dim,
|
651 |
+
eps=dec_config.norm_eps,
|
652 |
+
dtype=torch.float32,
|
653 |
+
)
|
654 |
+
|
655 |
+
# Self-Attention (GQA) with Causal Masking
|
656 |
+
self.self_attention = SelfAttention(
|
657 |
+
dec_config,
|
658 |
+
q_embed_dim=dec_embed_dim,
|
659 |
+
kv_embed_dim=dec_embed_dim,
|
660 |
+
num_query_heads=dec_config.num_attention_heads,
|
661 |
+
num_kv_heads=dec_config.num_key_value_heads,
|
662 |
+
head_dim=dec_config.head_dim,
|
663 |
+
compute_dtype=compute_dtype,
|
664 |
+
out_embed_dim=dec_embed_dim,
|
665 |
+
)
|
666 |
+
# Cross-Attention (MHA)
|
667 |
+
self.cross_attention = CrossAttention(
|
668 |
+
dec_config,
|
669 |
+
q_embed_dim=dec_embed_dim,
|
670 |
+
kv_embed_dim=enc_embed_dim, # Note kv_embed_dim
|
671 |
+
num_query_heads=dec_config.cross_num_attention_heads,
|
672 |
+
num_kv_heads=dec_config.cross_num_key_value_heads,
|
673 |
+
head_dim=dec_config.cross_head_dim,
|
674 |
+
compute_dtype=compute_dtype,
|
675 |
+
out_embed_dim=dec_embed_dim,
|
676 |
+
)
|
677 |
+
# MLP
|
678 |
+
self.mlp = MlpBlock(
|
679 |
+
embed_dim=dec_embed_dim,
|
680 |
+
intermediate_dim=dec_config.intermediate_size,
|
681 |
+
compute_dtype=compute_dtype,
|
682 |
+
)
|
683 |
+
|
684 |
+
def forward(
|
685 |
+
self,
|
686 |
+
x: torch.Tensor,
|
687 |
+
state: DecoderInferenceState,
|
688 |
+
self_attn_cache: KVCache | None = None,
|
689 |
+
cross_attn_cache: KVCache | None = None,
|
690 |
+
prefill: bool = False,
|
691 |
+
current_idx: int = 0,
|
692 |
+
) -> torch.Tensor:
|
693 |
+
residual = x
|
694 |
+
x_norm = self.pre_sa_norm(x).to(self.compute_dtype)
|
695 |
+
|
696 |
+
self_attn_mask = state.casual_attn_mask[None, None, current_idx]
|
697 |
+
|
698 |
+
sa_out = self.self_attention(
|
699 |
+
X=x_norm, # (2, 1, D)
|
700 |
+
q_positions=state.dec_positions, # (2, 1)
|
701 |
+
kv_positions=state.dec_positions, # (2, 1)
|
702 |
+
attn_mask=self_attn_mask,
|
703 |
+
cache=self_attn_cache,
|
704 |
+
prefill=prefill,
|
705 |
+
is_causal=prefill,
|
706 |
+
current_idx=current_idx,
|
707 |
+
)
|
708 |
+
|
709 |
+
x = residual + sa_out
|
710 |
+
|
711 |
+
residual = x
|
712 |
+
x_norm = self.pre_ca_norm(x).to(self.compute_dtype)
|
713 |
+
ca_out = self.cross_attention(
|
714 |
+
Xq=x_norm,
|
715 |
+
q_positions=state.dec_positions,
|
716 |
+
kv_positions=state.enc_positions,
|
717 |
+
attn_mask=state.cross_attn_mask,
|
718 |
+
cache=cross_attn_cache,
|
719 |
+
)
|
720 |
+
x = residual + ca_out
|
721 |
+
|
722 |
+
residual = x
|
723 |
+
x_norm = self.pre_mlp_norm(x).to(self.compute_dtype)
|
724 |
+
mlp_out = self.mlp(x_norm)
|
725 |
+
x = residual + mlp_out
|
726 |
+
|
727 |
+
return x
|
728 |
+
|
729 |
+
|
730 |
+
class Decoder(nn.Module):
|
731 |
+
"""Transformer Decoder Stack using DenseGeneral."""
|
732 |
+
|
733 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
734 |
+
super().__init__()
|
735 |
+
self.config = config
|
736 |
+
dec_config = config.decoder_config
|
737 |
+
self.num_channels = dec_config.num_channels
|
738 |
+
self.num_layers = dec_config.num_hidden_layers
|
739 |
+
|
740 |
+
self.embeddings = nn.ModuleList(
|
741 |
+
[
|
742 |
+
nn.Embedding(dec_config.vocab_size, dec_config.hidden_size, dtype=compute_dtype)
|
743 |
+
for _ in range(self.num_channels)
|
744 |
+
]
|
745 |
+
)
|
746 |
+
self.layers = nn.ModuleList(
|
747 |
+
[DecoderLayer(config=config, compute_dtype=compute_dtype) for _ in range(self.num_layers)]
|
748 |
+
)
|
749 |
+
|
750 |
+
self.norm = RMSNorm(
|
751 |
+
dec_config.hidden_size,
|
752 |
+
eps=dec_config.norm_eps,
|
753 |
+
dtype=torch.float32,
|
754 |
+
)
|
755 |
+
|
756 |
+
self.logits_dense = DenseGeneral(
|
757 |
+
in_shapes=(dec_config.hidden_size,),
|
758 |
+
out_features=(self.num_channels, dec_config.vocab_size),
|
759 |
+
axis=(-1,),
|
760 |
+
weight_dtype=compute_dtype,
|
761 |
+
)
|
762 |
+
|
763 |
+
def precompute_cross_attn_cache(
|
764 |
+
self,
|
765 |
+
enc_out: torch.Tensor, # (B, S, E)
|
766 |
+
) -> list[KVCache]:
|
767 |
+
"""
|
768 |
+
Computes the Key and Value tensors for cross-attention for each layer from the encoder output.
|
769 |
+
"""
|
770 |
+
per_layer_kv_cache: list[KVCache] = []
|
771 |
+
|
772 |
+
for layer in self.layers:
|
773 |
+
cross_attn_module = layer.cross_attention
|
774 |
+
k_proj = cross_attn_module.k_proj(enc_out)
|
775 |
+
v_proj = cross_attn_module.v_proj(enc_out)
|
776 |
+
|
777 |
+
k = k_proj.transpose(1, 2)
|
778 |
+
v = v_proj.transpose(1, 2)
|
779 |
+
|
780 |
+
per_layer_kv_cache.append(KVCache.from_kv(k, v))
|
781 |
+
|
782 |
+
return per_layer_kv_cache
|
783 |
+
|
784 |
+
def decode_step(
|
785 |
+
self,
|
786 |
+
tgt_ids_Bx1xC: torch.Tensor, # [B, 1, C]
|
787 |
+
state: DecoderInferenceState,
|
788 |
+
current_idx: int,
|
789 |
+
) -> torch.Tensor:
|
790 |
+
"""
|
791 |
+
Performs a single decoding step, managing KV caches layer by layer.
|
792 |
+
Returns:
|
793 |
+
A tuple containing:
|
794 |
+
- logits_Bx1xCV: The final output logits for the current step (B, 1, C*V), cast to float32.
|
795 |
+
"""
|
796 |
+
|
797 |
+
x = None
|
798 |
+
for i in range(self.num_channels):
|
799 |
+
channel_tokens = tgt_ids_Bx1xC[..., i]
|
800 |
+
channel_embed = self.embeddings[i](channel_tokens)
|
801 |
+
x = channel_embed if x is None else x + channel_embed
|
802 |
+
|
803 |
+
for i, layer in enumerate(self.layers):
|
804 |
+
self_cache = state.self_attn_cache[i]
|
805 |
+
cross_cache = state.cross_attn_cache[i]
|
806 |
+
x = layer(
|
807 |
+
x, # (2, 1, D)
|
808 |
+
state,
|
809 |
+
self_attn_cache=self_cache,
|
810 |
+
cross_attn_cache=cross_cache,
|
811 |
+
current_idx=current_idx,
|
812 |
+
)
|
813 |
+
|
814 |
+
x = self.norm(x)
|
815 |
+
logits_Bx1xCxV = self.logits_dense(x)
|
816 |
+
|
817 |
+
return logits_Bx1xCxV.to(torch.float32)
|
818 |
+
|
819 |
+
def forward(self, tgt_ids_BxTxC: torch.Tensor, state: DecoderInferenceState) -> torch.Tensor:
|
820 |
+
"""
|
821 |
+
Forward pass for the Decoder stack, managing KV caches.
|
822 |
+
Args:
|
823 |
+
tgt_ids_BxTxC: Target token IDs (B, T, C).
|
824 |
+
encoder_out: Output from the encoder (B, S, E).
|
825 |
+
tgt_positions: Positions for target sequence (B, T).
|
826 |
+
src_positions: Positions for source sequence (B, S).
|
827 |
+
self_attn_mask: Mask for self-attention.
|
828 |
+
cross_attn_mask: Mask for cross-attention.
|
829 |
+
past_key_values: List containing the self-attention KV cache for each layer
|
830 |
+
from the previous decoding step. `len(past_key_values)` should
|
831 |
+
equal `num_layers`.
|
832 |
+
precomputed_cross_attn_kv: A single tuple containing the pre-computed K/V cache
|
833 |
+
derived from `encoder_out`. This is passed identically
|
834 |
+
to all layers.
|
835 |
+
Returns:
|
836 |
+
A tuple containing:
|
837 |
+
- logits: The final output logits (B, T, C * V), cast to float32.
|
838 |
+
- present_key_values: A list containing the updated self-attention KV cache
|
839 |
+
for each layer for the *current* decoding step.
|
840 |
+
"""
|
841 |
+
_, _, num_channels_in = tgt_ids_BxTxC.shape
|
842 |
+
assert num_channels_in == self.num_channels, "Input channels mismatch"
|
843 |
+
|
844 |
+
# Embeddings
|
845 |
+
x = None
|
846 |
+
for i in range(self.num_channels):
|
847 |
+
channel_tokens = tgt_ids_BxTxC[..., i]
|
848 |
+
channel_embed = self.embeddings[i](channel_tokens)
|
849 |
+
x = channel_embed if x is None else x + channel_embed
|
850 |
+
|
851 |
+
for i, layer in enumerate(self.layers):
|
852 |
+
self_cache = state.self_attn_cache[i]
|
853 |
+
cross_cache = state.cross_attn_cache[i]
|
854 |
+
x = layer(
|
855 |
+
x,
|
856 |
+
state,
|
857 |
+
self_attn_cache=self_cache,
|
858 |
+
cross_attn_cache=cross_cache,
|
859 |
+
prefill=True,
|
860 |
+
)
|
861 |
+
|
862 |
+
# Final Norm
|
863 |
+
x = self.norm(x)
|
864 |
+
logits_BxTxCxV = self.logits_dense(x)
|
865 |
+
|
866 |
+
return logits_BxTxCxV.to(torch.float32)
|
867 |
+
|
868 |
+
|
869 |
+
class DiaModel(
|
870 |
+
nn.Module,
|
871 |
+
PyTorchModelHubMixin,
|
872 |
+
repo_url="https://github.com/nari-labs/dia",
|
873 |
+
pipeline_tag="text-to-speech",
|
874 |
+
license="apache-2.0",
|
875 |
+
coders={
|
876 |
+
DiaConfig: (
|
877 |
+
lambda x: x.model_dump(),
|
878 |
+
lambda data: DiaConfig.model_validate(data),
|
879 |
+
),
|
880 |
+
},
|
881 |
+
):
|
882 |
+
"""PyTorch Dia Model using DenseGeneral."""
|
883 |
+
|
884 |
+
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
|
885 |
+
super().__init__()
|
886 |
+
self.config = config
|
887 |
+
self.encoder = Encoder(config, compute_dtype)
|
888 |
+
self.decoder = Decoder(config, compute_dtype)
|
model.py
ADDED
@@ -0,0 +1,802 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from enum import Enum
|
3 |
+
from typing import Callable
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchaudio
|
9 |
+
|
10 |
+
from .audio import apply_audio_delay, build_delay_indices, build_revert_indices, revert_audio_delay
|
11 |
+
from .config import DiaConfig
|
12 |
+
from .layers import DiaModel
|
13 |
+
from .state import DecoderInferenceState, DecoderOutput, EncoderInferenceState
|
14 |
+
|
15 |
+
|
16 |
+
DEFAULT_SAMPLE_RATE = 44100
|
17 |
+
SAMPLE_RATE_RATIO = 512
|
18 |
+
|
19 |
+
|
20 |
+
def _get_default_device():
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
return torch.device("cuda")
|
23 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
24 |
+
return torch.device("mps")
|
25 |
+
return torch.device("cpu")
|
26 |
+
|
27 |
+
|
28 |
+
def _sample_next_token(
|
29 |
+
logits_BCxV: torch.Tensor,
|
30 |
+
temperature: float,
|
31 |
+
top_p: float,
|
32 |
+
top_k: int | None,
|
33 |
+
audio_eos_value: int,
|
34 |
+
) -> torch.Tensor:
|
35 |
+
if temperature == 0.0:
|
36 |
+
return torch.argmax(logits_BCxV, dim=-1)
|
37 |
+
|
38 |
+
logits_BCxV = logits_BCxV / temperature
|
39 |
+
|
40 |
+
if audio_eos_value is not None and audio_eos_value >= 0:
|
41 |
+
top_logit_indices_BC = torch.argmax(logits_BCxV, dim=-1)
|
42 |
+
eos_not_highest_mask_BC = top_logit_indices_BC != audio_eos_value
|
43 |
+
mask_eos_unless_highest_BCxV = torch.zeros_like(logits_BCxV, dtype=torch.bool)
|
44 |
+
mask_eos_unless_highest_BCxV[eos_not_highest_mask_BC, audio_eos_value] = True
|
45 |
+
logits_BCxV = logits_BCxV.masked_fill(mask_eos_unless_highest_BCxV, -torch.inf)
|
46 |
+
eos_highest_mask_BC = top_logit_indices_BC == audio_eos_value
|
47 |
+
mask_eos_highest_BCxV = torch.zeros_like(logits_BCxV, dtype=torch.bool)
|
48 |
+
mask_eos_highest_BCxV[eos_highest_mask_BC, :audio_eos_value] = True
|
49 |
+
logits_BCxV = logits_BCxV.masked_fill(mask_eos_highest_BCxV, -torch.inf)
|
50 |
+
|
51 |
+
if top_k is not None:
|
52 |
+
_, top_k_indices_BCxV = torch.topk(logits_BCxV, k=top_k, dim=-1)
|
53 |
+
mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
|
54 |
+
mask = mask.scatter(dim=-1, index=top_k_indices_BCxV, value=False)
|
55 |
+
logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)
|
56 |
+
|
57 |
+
if top_p < 1.0:
|
58 |
+
probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
59 |
+
sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(probs_BCxV, dim=-1, descending=True)
|
60 |
+
cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)
|
61 |
+
|
62 |
+
sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
|
63 |
+
sorted_indices_to_remove_BCxV = torch.roll(sorted_indices_to_remove_BCxV, shifts=1, dims=-1)
|
64 |
+
sorted_indices_to_remove_BCxV[..., 0] = torch.zeros_like(sorted_indices_to_remove_BCxV[..., 0])
|
65 |
+
|
66 |
+
indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
|
67 |
+
indices_to_remove_BCxV = indices_to_remove_BCxV.scatter(
|
68 |
+
dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV
|
69 |
+
)
|
70 |
+
logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)
|
71 |
+
|
72 |
+
final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
73 |
+
|
74 |
+
sampled_indices_BC = torch.multinomial(final_probs_BCxV, num_samples=1)
|
75 |
+
sampled_indices_C = sampled_indices_BC.squeeze(-1)
|
76 |
+
return sampled_indices_C
|
77 |
+
|
78 |
+
|
79 |
+
class ComputeDtype(str, Enum):
|
80 |
+
FLOAT32 = "float32"
|
81 |
+
FLOAT16 = "float16"
|
82 |
+
BFLOAT16 = "bfloat16"
|
83 |
+
|
84 |
+
def to_dtype(self) -> torch.dtype:
|
85 |
+
if self == ComputeDtype.FLOAT32:
|
86 |
+
return torch.float32
|
87 |
+
elif self == ComputeDtype.FLOAT16:
|
88 |
+
return torch.float16
|
89 |
+
elif self == ComputeDtype.BFLOAT16:
|
90 |
+
return torch.bfloat16
|
91 |
+
else:
|
92 |
+
raise ValueError(f"Unsupported compute dtype: {self}")
|
93 |
+
|
94 |
+
|
95 |
+
class Dia:
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
config: DiaConfig,
|
99 |
+
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
|
100 |
+
device: torch.device | None = None,
|
101 |
+
load_dac: bool = True,
|
102 |
+
):
|
103 |
+
"""Initializes the Dia model.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
config: The configuration object for the model.
|
107 |
+
compute_dtype: The computation dtype to use.
|
108 |
+
device: The device to load the model onto. If None, will automatically select the best available device.
|
109 |
+
load_dac: Whether to load the DAC model.
|
110 |
+
|
111 |
+
Raises:
|
112 |
+
RuntimeError: If there is an error loading the DAC model.
|
113 |
+
"""
|
114 |
+
super().__init__()
|
115 |
+
self.config = config
|
116 |
+
self.device = device if device is not None else _get_default_device()
|
117 |
+
if isinstance(compute_dtype, str):
|
118 |
+
compute_dtype = ComputeDtype(compute_dtype)
|
119 |
+
self.compute_dtype = compute_dtype.to_dtype()
|
120 |
+
self.model: DiaModel = DiaModel(config, self.compute_dtype)
|
121 |
+
self.dac_model = None
|
122 |
+
self._compiled_step = None
|
123 |
+
self.load_dac = load_dac
|
124 |
+
|
125 |
+
if not self.load_dac:
|
126 |
+
print("Warning: DAC model will not be loaded. This is not recommended.")
|
127 |
+
|
128 |
+
if torch.cuda.is_available():
|
129 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def from_local(
|
133 |
+
cls,
|
134 |
+
config_path: str,
|
135 |
+
checkpoint_path: str,
|
136 |
+
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
|
137 |
+
device: torch.device | None = None,
|
138 |
+
load_dac: bool = True,
|
139 |
+
) -> "Dia":
|
140 |
+
"""Loads the Dia model from local configuration and checkpoint files.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
config_path: Path to the configuration JSON file.
|
144 |
+
checkpoint_path: Path to the model checkpoint (.pth) file.
|
145 |
+
compute_dtype: The computation dtype to use.
|
146 |
+
device: The device to load the model onto. If None, will automatically select the best available device.
|
147 |
+
load_dac: Whether to load the DAC model.
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
An instance of the Dia model loaded with weights and set to eval mode.
|
151 |
+
|
152 |
+
Raises:
|
153 |
+
FileNotFoundError: If the config or checkpoint file is not found.
|
154 |
+
RuntimeError: If there is an error loading the checkpoint.
|
155 |
+
"""
|
156 |
+
config = DiaConfig.load(config_path)
|
157 |
+
if config is None:
|
158 |
+
raise FileNotFoundError(f"Config file not found at {config_path}")
|
159 |
+
|
160 |
+
dia = cls(config, compute_dtype, device, load_dac)
|
161 |
+
|
162 |
+
try:
|
163 |
+
state_dict = torch.load(checkpoint_path, map_location=dia.device)
|
164 |
+
dia.model.load_state_dict(state_dict)
|
165 |
+
except FileNotFoundError:
|
166 |
+
raise FileNotFoundError(f"Checkpoint file not found at {checkpoint_path}")
|
167 |
+
except Exception as e:
|
168 |
+
raise RuntimeError(f"Error loading checkpoint from {checkpoint_path}") from e
|
169 |
+
|
170 |
+
dia.model.to(dia.device)
|
171 |
+
dia.model.eval()
|
172 |
+
if load_dac:
|
173 |
+
dia._load_dac_model()
|
174 |
+
return dia
|
175 |
+
|
176 |
+
@classmethod
|
177 |
+
def from_pretrained(
|
178 |
+
cls,
|
179 |
+
model_name: str = "nari-labs/Dia-1.6B-0626",
|
180 |
+
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
|
181 |
+
device: torch.device | None = None,
|
182 |
+
load_dac: bool = True,
|
183 |
+
) -> "Dia":
|
184 |
+
"""Loads the Dia model from a Hugging Face Hub repository.
|
185 |
+
|
186 |
+
Downloads the configuration and checkpoint files from the specified
|
187 |
+
repository ID and then loads the model.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
model_name: The Hugging Face Hub repository ID (e.g., "nari-labs/Dia-1.6B-0626").
|
191 |
+
compute_dtype: The computation dtype to use.
|
192 |
+
device: The device to load the model onto. If None, will automatically select the best available device.
|
193 |
+
load_dac: Whether to load the DAC model.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
An instance of the Dia model loaded with weights and set to eval mode.
|
197 |
+
|
198 |
+
Raises:
|
199 |
+
FileNotFoundError: If config or checkpoint download/loading fails.
|
200 |
+
RuntimeError: If there is an error loading the checkpoint.
|
201 |
+
"""
|
202 |
+
if isinstance(compute_dtype, str):
|
203 |
+
compute_dtype = ComputeDtype(compute_dtype)
|
204 |
+
|
205 |
+
# Load model directly using DiaModel's from_pretrained which handles HF download
|
206 |
+
try:
|
207 |
+
loaded_model = DiaModel.from_pretrained(model_name, compute_dtype=compute_dtype.to_dtype())
|
208 |
+
except Exception as e:
|
209 |
+
raise RuntimeError(f"Error loading model from Hugging Face Hub ({model_name})") from e
|
210 |
+
|
211 |
+
config = loaded_model.config # Get config from the loaded model
|
212 |
+
dia = cls(config, compute_dtype, device, load_dac)
|
213 |
+
|
214 |
+
dia.model = loaded_model # Assign the already loaded model
|
215 |
+
dia.model.to(dia.device)
|
216 |
+
dia.model.eval()
|
217 |
+
if load_dac:
|
218 |
+
dia._load_dac_model()
|
219 |
+
return dia
|
220 |
+
|
221 |
+
def _load_dac_model(self):
|
222 |
+
"""Loads the Descript Audio Codec (DAC) model.
|
223 |
+
|
224 |
+
Downloads the DAC model if necessary and loads it onto the specified device.
|
225 |
+
Sets the DAC model to evaluation mode.
|
226 |
+
|
227 |
+
Raises:
|
228 |
+
RuntimeError: If downloading or loading the DAC model fails.
|
229 |
+
"""
|
230 |
+
import dac
|
231 |
+
|
232 |
+
try:
|
233 |
+
dac_model_path = dac.utils.download()
|
234 |
+
dac_model = dac.DAC.load(dac_model_path).to(self.device)
|
235 |
+
dac_model.eval() # Ensure DAC is in eval mode
|
236 |
+
except Exception as e:
|
237 |
+
raise RuntimeError("Failed to load DAC model") from e
|
238 |
+
self.dac_model = dac_model
|
239 |
+
|
240 |
+
def _encode_text(self, text: str) -> torch.Tensor:
|
241 |
+
"""Encodes the input text string into a tensor of token IDs using byte-level encoding.
|
242 |
+
|
243 |
+
Special tokens [S1] and [S2] are replaced by their byte values. The resulting
|
244 |
+
sequence is truncated to the maximum configured text length.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
text: The input text string.
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
A tensor containing the encoded byte token IDs.
|
251 |
+
"""
|
252 |
+
max_len = self.config.encoder_config.max_position_embeddings
|
253 |
+
|
254 |
+
byte_text = text.encode("utf-8")
|
255 |
+
# Replace special tokens with their byte values if needed by the specific tokenizer/config
|
256 |
+
# Assuming byte values 1 and 2 are correct placeholders based on original code
|
257 |
+
replaced_bytes = byte_text.replace(b"[S1]", b"\x01").replace(b"[S2]", b"\x02")
|
258 |
+
text_tokens = list(replaced_bytes)
|
259 |
+
return torch.tensor(
|
260 |
+
text_tokens[:max_len],
|
261 |
+
dtype=torch.long,
|
262 |
+
device=self.device,
|
263 |
+
)
|
264 |
+
|
265 |
+
def _pad_text_input(self, text_tokens: list[torch.Tensor]) -> torch.Tensor:
|
266 |
+
"""Pads the text input to the maximum length."""
|
267 |
+
text_pad_value = 0
|
268 |
+
max_len = self.config.encoder_config.max_position_embeddings
|
269 |
+
batch_size = len(text_tokens)
|
270 |
+
|
271 |
+
src_tokens = torch.full(
|
272 |
+
(batch_size, 1, max_len),
|
273 |
+
fill_value=text_pad_value,
|
274 |
+
dtype=torch.long,
|
275 |
+
device=self.device,
|
276 |
+
)
|
277 |
+
for i in range(batch_size):
|
278 |
+
current_len = len(text_tokens[i])
|
279 |
+
src_tokens[i, 0, :current_len] = text_tokens[i]
|
280 |
+
return src_tokens
|
281 |
+
|
282 |
+
def _prepare_audio_prompt(self, audio_prompts: list[torch.Tensor | None]) -> tuple[torch.Tensor, list[int]]:
|
283 |
+
"""Prepares the audio prompt tensor for the decoder.
|
284 |
+
|
285 |
+
Handles padding, adds the beginning-of-sequence (BOS) token, applies the
|
286 |
+
delay pattern, and determines the number of prefill steps for each item
|
287 |
+
in the batch.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
audio_prompts: A list of audio prompt tensors (encoded DAC frames) or None.
|
291 |
+
Each tensor should have shape [T, C].
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
A tuple containing:
|
295 |
+
- delayed_batch (torch.Tensor): The prepared audio prompt tensor with
|
296 |
+
delays applied, shape [B, T_max_padded, C].
|
297 |
+
- prefill_steps (list[int]): A list containing the number of valid
|
298 |
+
tokens (including BOS) for each prompt in the batch.
|
299 |
+
"""
|
300 |
+
num_channels = self.config.decoder_config.num_channels
|
301 |
+
audio_bos_value = self.config.bos_token_id
|
302 |
+
delay_pattern = self.config.delay_pattern
|
303 |
+
max_delay_pattern = max(delay_pattern)
|
304 |
+
batch_size = len(audio_prompts)
|
305 |
+
|
306 |
+
max_len = max(p.shape[0] if p is not None else 0 for p in audio_prompts) + max_delay_pattern
|
307 |
+
prefill_steps = []
|
308 |
+
|
309 |
+
prefill = torch.full(
|
310 |
+
(batch_size, max_len, num_channels),
|
311 |
+
fill_value=-1,
|
312 |
+
dtype=torch.int,
|
313 |
+
device=self.device,
|
314 |
+
)
|
315 |
+
|
316 |
+
prefill[:, 0, :] = audio_bos_value
|
317 |
+
|
318 |
+
for i in range(batch_size):
|
319 |
+
prompt = audio_prompts[i]
|
320 |
+
if prompt is not None:
|
321 |
+
prompt = prompt.to(device=self.device, dtype=torch.int)
|
322 |
+
prefill[i, 1 : prompt.shape[0] + 1, :] = prompt
|
323 |
+
prefill_steps.append(prompt.shape[0] + 1)
|
324 |
+
else:
|
325 |
+
prefill_steps.append(1)
|
326 |
+
|
327 |
+
delay_precomp = build_delay_indices(
|
328 |
+
B=batch_size,
|
329 |
+
T=max_len,
|
330 |
+
C=num_channels,
|
331 |
+
delay_pattern=delay_pattern,
|
332 |
+
)
|
333 |
+
|
334 |
+
delayed_batch = apply_audio_delay(
|
335 |
+
audio_BxTxC=prefill,
|
336 |
+
pad_value=-1,
|
337 |
+
bos_value=audio_bos_value,
|
338 |
+
precomp=delay_precomp,
|
339 |
+
)
|
340 |
+
|
341 |
+
return delayed_batch, prefill_steps
|
342 |
+
|
343 |
+
def _prepare_generation(
|
344 |
+
self,
|
345 |
+
text: torch.Tensor,
|
346 |
+
audio_prompts: list[torch.Tensor | None],
|
347 |
+
max_tokens: int | None = None,
|
348 |
+
attn_fn: Callable = F.scaled_dot_product_attention,
|
349 |
+
):
|
350 |
+
"""Initializes the model state for generation.
|
351 |
+
|
352 |
+
Encodes the text input (conditional and unconditional), prepares the
|
353 |
+
encoder and decoder states (including KV caches and cross-attention),
|
354 |
+
prepares the audio prompt, and performs the initial decoder prefill steps
|
355 |
+
based on the audio prompts.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
text: The padded text input tensor, shape [B, 1, T_text].
|
359 |
+
audio_prompts: A list of prepared audio prompt tensors or None.
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
A tuple containing:
|
363 |
+
- dec_state (DecoderInferenceState): The initialized decoder state.
|
364 |
+
- dec_output (DecoderOutput): The initialized decoder output manager,
|
365 |
+
containing the prefilled audio tokens.
|
366 |
+
"""
|
367 |
+
batch_size = text.shape[0]
|
368 |
+
|
369 |
+
enc_input_uncond = torch.zeros_like(text)
|
370 |
+
enc_input_cond = text
|
371 |
+
stacked_inputs = torch.stack([enc_input_uncond, enc_input_cond], dim=1)
|
372 |
+
enc_input = stacked_inputs.view(2 * batch_size, -1)
|
373 |
+
|
374 |
+
enc_state = EncoderInferenceState.new(self.config, enc_input_cond)
|
375 |
+
encoder_out = self.model.encoder(enc_input, enc_state)
|
376 |
+
|
377 |
+
dec_cross_attn_cache = self.model.decoder.precompute_cross_attn_cache(encoder_out)
|
378 |
+
dec_state = DecoderInferenceState.new(
|
379 |
+
self.config,
|
380 |
+
enc_state,
|
381 |
+
encoder_out,
|
382 |
+
dec_cross_attn_cache,
|
383 |
+
self.compute_dtype,
|
384 |
+
max_generation_length=max_tokens,
|
385 |
+
)
|
386 |
+
prefill, prefill_steps = self._prepare_audio_prompt(audio_prompts)
|
387 |
+
|
388 |
+
dec_output = DecoderOutput.new(batch_size, self.config, self.device)
|
389 |
+
dec_output.prefill(prefill, prefill_steps)
|
390 |
+
|
391 |
+
dec_step = min(prefill_steps) - 1
|
392 |
+
if dec_step > 0:
|
393 |
+
dec_state.prepare_step(0, dec_step)
|
394 |
+
tokens_BxTxC = dec_output.get_tokens_at(0, dec_step).repeat_interleave(2, dim=0)
|
395 |
+
self.model.decoder.forward(tokens_BxTxC, dec_state)
|
396 |
+
|
397 |
+
return dec_state, dec_output
|
398 |
+
|
399 |
+
def _decoder_step(
|
400 |
+
self,
|
401 |
+
tokens_Bx1xC: torch.Tensor,
|
402 |
+
dec_state: DecoderInferenceState,
|
403 |
+
cfg_scale: float,
|
404 |
+
temperature: float,
|
405 |
+
top_p: float,
|
406 |
+
top_k: int,
|
407 |
+
current_idx: int,
|
408 |
+
) -> torch.Tensor:
|
409 |
+
"""Performs a single step of the decoder inference.
|
410 |
+
|
411 |
+
Takes the tokens from the previous step, runs them through the decoder
|
412 |
+
(for both conditional and unconditional paths), applies classifier-free
|
413 |
+
guidance (CFG), samples the next token using temperature, top-p, and top-k
|
414 |
+
sampling, and applies constraints (e.g., preventing EOS in certain channels).
|
415 |
+
|
416 |
+
Args:
|
417 |
+
tokens_Bx1xC: The input tokens for the current step, shape [2*B, 1, C].
|
418 |
+
Repeated for CFG (unconditional and conditional).
|
419 |
+
dec_state: The current state of the decoder (KV caches, etc.).
|
420 |
+
cfg_scale: The scale factor for classifier-free guidance.
|
421 |
+
temperature: The temperature for sampling.
|
422 |
+
top_p: The cumulative probability threshold for top-p sampling.
|
423 |
+
top_k: The number of top logits to consider for top-k sampling.
|
424 |
+
current_idx: The current generation step index.
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
torch.Tensor: The sampled next tokens for each item in the batch,
|
428 |
+
shape [B, C].
|
429 |
+
"""
|
430 |
+
B = tokens_Bx1xC.shape[0] // 2
|
431 |
+
|
432 |
+
audio_eos_value = self.config.eos_token_id
|
433 |
+
logits_Bx1xCxV = self.model.decoder.decode_step(tokens_Bx1xC, dec_state, current_idx)
|
434 |
+
|
435 |
+
logits_last_2BxCxV = logits_Bx1xCxV[:, -1]
|
436 |
+
logits_last_Bx2xCxV = logits_last_2BxCxV.view(B, 2, *logits_last_2BxCxV.shape[1:])
|
437 |
+
|
438 |
+
uncond_logits_BxCxV = logits_last_Bx2xCxV[:, 0, :, :] # Shape [B, C, V]
|
439 |
+
cond_logits_BxCxV = logits_last_Bx2xCxV[:, 1, :, :] # Shape [B, C, V]
|
440 |
+
logits_BxCxV = cond_logits_BxCxV + cfg_scale * (cond_logits_BxCxV - uncond_logits_BxCxV)
|
441 |
+
|
442 |
+
_, top_k_indices_BxCxk = torch.topk(logits_BxCxV, k=top_k, dim=-1)
|
443 |
+
mask_BxCxV = torch.ones_like(logits_BxCxV, dtype=torch.bool)
|
444 |
+
mask_BxCxV = mask_BxCxV.scatter(dim=-1, index=top_k_indices_BxCxk, value=False)
|
445 |
+
logits_BxCxV = cond_logits_BxCxV.masked_fill(mask_BxCxV, -torch.inf)
|
446 |
+
|
447 |
+
logits_BxCxV[:, :, audio_eos_value + 1 :] = torch.full_like(
|
448 |
+
logits_BxCxV[:, :, audio_eos_value + 1 :],
|
449 |
+
fill_value=-torch.inf,
|
450 |
+
)
|
451 |
+
logits_BxCxV[:, 1:, audio_eos_value:] = torch.full_like(
|
452 |
+
logits_BxCxV[:, 1:, audio_eos_value:],
|
453 |
+
fill_value=-torch.inf,
|
454 |
+
)
|
455 |
+
|
456 |
+
flat_logits_BCxV = logits_BxCxV.view(B * self.config.decoder_config.num_channels, -1)
|
457 |
+
|
458 |
+
pred_BC = _sample_next_token(
|
459 |
+
flat_logits_BCxV.float(),
|
460 |
+
temperature=temperature,
|
461 |
+
top_p=top_p,
|
462 |
+
top_k=top_k,
|
463 |
+
audio_eos_value=audio_eos_value,
|
464 |
+
)
|
465 |
+
|
466 |
+
pred_BxC = pred_BC.view(B, self.config.decoder_config.num_channels)
|
467 |
+
return pred_BxC
|
468 |
+
|
469 |
+
def _generate_output(self, generated_codes: torch.Tensor, lengths_Bx: torch.Tensor) -> list[np.ndarray]:
|
470 |
+
"""Converts generated delayed codes into audio waveforms.
|
471 |
+
|
472 |
+
Reverts the delay pattern applied during generation, decodes the resulting
|
473 |
+
codebook using the DAC model (if loaded), and returns a list of audio
|
474 |
+
waveforms as NumPy arrays. If DAC is not loaded, returns the raw codebook indices.
|
475 |
+
|
476 |
+
Args:
|
477 |
+
generated_codes: The tensor of generated audio codes with delays,
|
478 |
+
shape [B, T_gen, C].
|
479 |
+
lengths_Bx: A tensor containing the valid length of generated codes
|
480 |
+
(excluding padding and BOS/EOS markers) for each item
|
481 |
+
in the batch, shape [B].
|
482 |
+
|
483 |
+
Returns:
|
484 |
+
A list of NumPy arrays, where each array represents the generated audio
|
485 |
+
waveform for one item in the batch. If DAC is not loaded, returns the
|
486 |
+
raw, reverted codebook indices as NumPy arrays.
|
487 |
+
"""
|
488 |
+
num_channels = self.config.decoder_config.num_channels
|
489 |
+
batch_size = generated_codes.shape[0]
|
490 |
+
seq_length = generated_codes.shape[1]
|
491 |
+
delay_pattern = self.config.delay_pattern
|
492 |
+
audio_pad_value = self.config.pad_token_id
|
493 |
+
max_delay_pattern = max(delay_pattern)
|
494 |
+
|
495 |
+
revert_precomp = build_revert_indices(
|
496 |
+
B=batch_size,
|
497 |
+
T=seq_length,
|
498 |
+
C=num_channels,
|
499 |
+
delay_pattern=delay_pattern,
|
500 |
+
)
|
501 |
+
|
502 |
+
codebook = revert_audio_delay(
|
503 |
+
audio_BxTxC=generated_codes,
|
504 |
+
pad_value=audio_pad_value,
|
505 |
+
precomp=revert_precomp,
|
506 |
+
T=seq_length,
|
507 |
+
)[:, :-max_delay_pattern, :]
|
508 |
+
|
509 |
+
min_valid_index = 0
|
510 |
+
max_valid_index = 1023
|
511 |
+
invalid_mask = (codebook < min_valid_index) | (codebook > max_valid_index)
|
512 |
+
codebook[invalid_mask] = 0
|
513 |
+
|
514 |
+
audios = []
|
515 |
+
|
516 |
+
if self.load_dac:
|
517 |
+
for i in range(batch_size):
|
518 |
+
audio = self._decode(codebook[i, : lengths_Bx[i], :])
|
519 |
+
audio_np = audio.cpu().numpy()
|
520 |
+
audios.append(audio_np)
|
521 |
+
else:
|
522 |
+
for i in range(batch_size):
|
523 |
+
audios.append(codebook[i, : lengths_Bx[i], :].cpu().numpy())
|
524 |
+
return audios
|
525 |
+
|
526 |
+
@torch.no_grad()
|
527 |
+
@torch.inference_mode()
|
528 |
+
def _encode(self, audio: torch.Tensor) -> torch.Tensor:
|
529 |
+
"""
|
530 |
+
Encodes the given audio waveform into a tensor of DAC codebook indices
|
531 |
+
"""
|
532 |
+
audio = audio.unsqueeze(0)
|
533 |
+
audio_data = self.dac_model.preprocess(audio, DEFAULT_SAMPLE_RATE)
|
534 |
+
_, encoded_frame, _, _, _ = self.dac_model.encode(audio_data)
|
535 |
+
encoded_frame: torch.Tensor
|
536 |
+
return encoded_frame.squeeze(0).transpose(0, 1)
|
537 |
+
|
538 |
+
@torch.no_grad()
|
539 |
+
@torch.inference_mode()
|
540 |
+
def _decode(self, audio_codes: torch.Tensor) -> torch.Tensor:
|
541 |
+
"""
|
542 |
+
Decodes the given frames into an output audio waveform
|
543 |
+
"""
|
544 |
+
audio_codes = audio_codes.unsqueeze(0).transpose(1, 2)
|
545 |
+
audio_values, _, _ = self.dac_model.quantizer.from_codes(audio_codes)
|
546 |
+
audio_values = self.dac_model.decode(audio_values)
|
547 |
+
audio_values: torch.Tensor
|
548 |
+
return audio_values.squeeze()
|
549 |
+
|
550 |
+
def load_audio(self, audio_path: str) -> torch.Tensor:
|
551 |
+
"""Loads and preprocesses an audio file for use as a prompt.
|
552 |
+
|
553 |
+
Loads the audio file, resamples it to the target sample rate if necessary,
|
554 |
+
preprocesses it using the DAC model's preprocessing, and encodes it into
|
555 |
+
DAC codebook indices.
|
556 |
+
|
557 |
+
Args:
|
558 |
+
audio_path: Path to the audio file.
|
559 |
+
|
560 |
+
Returns:
|
561 |
+
torch.Tensor: The encoded audio prompt as DAC codebook indices,
|
562 |
+
shape [T, C].
|
563 |
+
|
564 |
+
Raises:
|
565 |
+
RuntimeError: If the DAC model is not loaded (`load_dac=False` during init).
|
566 |
+
FileNotFoundError: If the audio file cannot be found.
|
567 |
+
Exception: If there's an error during loading or processing.
|
568 |
+
"""
|
569 |
+
if self.dac_model is None:
|
570 |
+
raise RuntimeError("DAC model is required for loading audio prompts but was not loaded.")
|
571 |
+
audio, sr = torchaudio.load(audio_path, channels_first=True) # C, T
|
572 |
+
if sr != DEFAULT_SAMPLE_RATE:
|
573 |
+
audio = torchaudio.functional.resample(audio, sr, DEFAULT_SAMPLE_RATE)
|
574 |
+
# Convert to mono if stereo
|
575 |
+
if audio.shape[0] > 1:
|
576 |
+
audio = torch.mean(audio, dim=0, keepdim=True) # Average channels to get mono
|
577 |
+
return self._encode(audio.to(self.device))
|
578 |
+
|
579 |
+
def save_audio(self, path: str, audio: np.ndarray):
|
580 |
+
"""Saves the generated audio waveform to a file.
|
581 |
+
|
582 |
+
Uses the soundfile library to write the NumPy audio array to the specified
|
583 |
+
path with the default sample rate.
|
584 |
+
|
585 |
+
Args:
|
586 |
+
path: The path where the audio file will be saved.
|
587 |
+
audio: The audio waveform as a NumPy array.
|
588 |
+
"""
|
589 |
+
import soundfile as sf
|
590 |
+
|
591 |
+
sf.write(path, audio, DEFAULT_SAMPLE_RATE)
|
592 |
+
|
593 |
+
@torch.inference_mode()
|
594 |
+
def generate(
|
595 |
+
self,
|
596 |
+
text: str | list[str],
|
597 |
+
max_tokens: int = 3072,
|
598 |
+
cfg_scale: float = 3.0,
|
599 |
+
temperature: float = 1.2,
|
600 |
+
top_p: float = 0.95,
|
601 |
+
use_torch_compile: bool = False,
|
602 |
+
cfg_filter_top_k: int = 45,
|
603 |
+
audio_prompt: list[str | torch.Tensor | None] | str | torch.Tensor | None = None,
|
604 |
+
audio_prompt_path: list[str | torch.Tensor | None] | str | torch.Tensor | None = None,
|
605 |
+
use_cfg_filter: bool | None = None,
|
606 |
+
verbose: bool = False,
|
607 |
+
) -> np.ndarray | list[np.ndarray]:
|
608 |
+
"""Generates audio corresponding to the input text.
|
609 |
+
|
610 |
+
Args:
|
611 |
+
text: The input text prompt, or a list of text prompts for batch generation.
|
612 |
+
max_tokens: The maximum number of audio tokens to generate per prompt.
|
613 |
+
Defaults to the model's configured audio length if None.
|
614 |
+
cfg_scale: The scale factor for classifier-free guidance (CFG). Higher values
|
615 |
+
lead to stronger guidance towards the text prompt.
|
616 |
+
temperature: The temperature for sampling. Higher values increase randomness.
|
617 |
+
top_p: The cumulative probability threshold for nucleus (top-p) sampling.
|
618 |
+
use_torch_compile: Whether to compile the generation steps using torch.compile.
|
619 |
+
Can significantly speed up generation after the initial
|
620 |
+
compilation overhead. Defaults to False.
|
621 |
+
cfg_filter_top_k: The number of top logits to consider during CFG filtering.
|
622 |
+
(Note: This parameter name might be slightly misleading based
|
623 |
+
on the code; it's used in the `_sample_next_token` function.)
|
624 |
+
audio_prompt: An audio prompt or list of prompts to condition the generation.
|
625 |
+
Can be a file path (str), a pre-loaded tensor (DAC codes), or None.
|
626 |
+
If a list, its length must match the batch size of the text input.
|
627 |
+
audio_prompt_path: (Deprecated) Use `audio_prompt` instead.
|
628 |
+
use_cfg_filter: (Deprecated) This parameter is no longer used.
|
629 |
+
verbose: If True, prints progress information during generation, including
|
630 |
+
speed metrics.
|
631 |
+
|
632 |
+
Returns:
|
633 |
+
If a single text prompt was provided, returns a NumPy array containing the
|
634 |
+
generated audio waveform.
|
635 |
+
If a list of text prompts was provided, returns a list of NumPy arrays,
|
636 |
+
each corresponding to a prompt in the input list. Returns None for a
|
637 |
+
sequence if no audio was generated for it.
|
638 |
+
"""
|
639 |
+
batch_size = len(text) if isinstance(text, list) else 1
|
640 |
+
audio_eos_value = self.config.eos_token_id
|
641 |
+
audio_pad_value = self.config.pad_token_id
|
642 |
+
delay_pattern = self.config.delay_pattern
|
643 |
+
max_delay_pattern = max(delay_pattern)
|
644 |
+
delay_pattern_Cx = torch.tensor(delay_pattern, device=self.device, dtype=torch.long)
|
645 |
+
self.model.eval()
|
646 |
+
|
647 |
+
if audio_prompt_path:
|
648 |
+
print("Warning: audio_prompt_path is deprecated. Use audio_prompt instead.")
|
649 |
+
audio_prompt = audio_prompt_path
|
650 |
+
if use_cfg_filter is not None:
|
651 |
+
print("Warning: use_cfg_filter is deprecated.")
|
652 |
+
|
653 |
+
if verbose:
|
654 |
+
total_start_time = time.time()
|
655 |
+
|
656 |
+
if use_torch_compile and not hasattr(self, "_compiled"):
|
657 |
+
# Compilation can take about a minute.
|
658 |
+
self._prepare_generation = torch.compile(self._prepare_generation, dynamic=True, fullgraph=True)
|
659 |
+
self._decoder_step = torch.compile(self._decoder_step, fullgraph=True, mode="max-autotune")
|
660 |
+
self._compiled = True
|
661 |
+
|
662 |
+
if isinstance(audio_prompt, list):
|
663 |
+
audio_prompt = [self.load_audio(p) if isinstance(p, str) else p for p in audio_prompt]
|
664 |
+
elif isinstance(audio_prompt, str):
|
665 |
+
audio_prompt = [self.load_audio(audio_prompt)]
|
666 |
+
elif isinstance(audio_prompt, torch.Tensor):
|
667 |
+
audio_prompt = [audio_prompt]
|
668 |
+
elif audio_prompt is None:
|
669 |
+
audio_prompt = [None] * batch_size
|
670 |
+
|
671 |
+
assert len(audio_prompt) == batch_size, "Number of audio prompts must match batch size"
|
672 |
+
|
673 |
+
if isinstance(text, list):
|
674 |
+
text = [self._encode_text(t) for t in text]
|
675 |
+
else:
|
676 |
+
text = [self._encode_text(text)]
|
677 |
+
text = self._pad_text_input(text)
|
678 |
+
|
679 |
+
dec_state, dec_output = self._prepare_generation(text, audio_prompt, max_tokens=max_tokens)
|
680 |
+
dec_step = min(dec_output.prefill_steps) - 1
|
681 |
+
current_idx = torch.tensor([dec_step], device=self.device)
|
682 |
+
|
683 |
+
eos_detected_Bx = torch.zeros((batch_size,), dtype=torch.bool, device=self.device)
|
684 |
+
eos_countdown_Bx = torch.full((batch_size,), -1, dtype=torch.long, device=self.device)
|
685 |
+
finished_step_Bx = torch.full((batch_size,), -1, dtype=torch.long, device=self.device)
|
686 |
+
|
687 |
+
bos_over = False
|
688 |
+
|
689 |
+
if verbose:
|
690 |
+
print("generate: starting generation loop")
|
691 |
+
if use_torch_compile:
|
692 |
+
print("generate: using use_torch_compile=True, the first step may be slow")
|
693 |
+
start_time = time.time()
|
694 |
+
|
695 |
+
# --- Generation Loop ---
|
696 |
+
while dec_step < max_tokens:
|
697 |
+
if (eos_countdown_Bx == 0).all():
|
698 |
+
break
|
699 |
+
|
700 |
+
current_step_idx = dec_step + 1
|
701 |
+
torch.compiler.cudagraph_mark_step_begin()
|
702 |
+
dec_state.prepare_step(dec_step)
|
703 |
+
tokens_Bx1xC = dec_output.get_tokens_at(dec_step).repeat_interleave(2, dim=0) # Repeat for CFG
|
704 |
+
|
705 |
+
pred_BxC = self._decoder_step(
|
706 |
+
tokens_Bx1xC,
|
707 |
+
dec_state,
|
708 |
+
cfg_scale,
|
709 |
+
temperature,
|
710 |
+
top_p,
|
711 |
+
cfg_filter_top_k,
|
712 |
+
current_idx,
|
713 |
+
)
|
714 |
+
|
715 |
+
current_idx += 1
|
716 |
+
|
717 |
+
active_mask_Bx = eos_countdown_Bx != 0
|
718 |
+
eos_trigger_Bx = torch.zeros_like(active_mask_Bx)
|
719 |
+
if active_mask_Bx.any():
|
720 |
+
is_eos_token = (~eos_detected_Bx[active_mask_Bx]) & (pred_BxC[active_mask_Bx, 0] == audio_eos_value)
|
721 |
+
is_max_len = current_step_idx >= max_tokens - max_delay_pattern
|
722 |
+
eos_trigger_Bx[active_mask_Bx] = is_eos_token | is_max_len
|
723 |
+
eos_detected_Bx |= eos_trigger_Bx
|
724 |
+
start_countdown_mask_Bx = eos_trigger_Bx & (eos_countdown_Bx < 0)
|
725 |
+
if start_countdown_mask_Bx.any():
|
726 |
+
eos_countdown_Bx[start_countdown_mask_Bx] = max_delay_pattern
|
727 |
+
finished_step_Bx[start_countdown_mask_Bx] = current_step_idx
|
728 |
+
|
729 |
+
padding_mask_Bx = eos_countdown_Bx > 0
|
730 |
+
if padding_mask_Bx.any():
|
731 |
+
pred_active_BxC = pred_BxC[padding_mask_Bx].clone()
|
732 |
+
countdown_active_Bx = eos_countdown_Bx[padding_mask_Bx]
|
733 |
+
step_after_eos_Bx = max_delay_pattern - countdown_active_Bx
|
734 |
+
step_after_eos_Bx_ = step_after_eos_Bx.unsqueeze(1)
|
735 |
+
delay_pattern_Cx_ = delay_pattern_Cx.unsqueeze(0)
|
736 |
+
eos_mask_NxC = step_after_eos_Bx_ == delay_pattern_Cx_
|
737 |
+
pad_mask_NxC = step_after_eos_Bx_ > delay_pattern_Cx_
|
738 |
+
pred_active_BxC[eos_mask_NxC] = audio_eos_value
|
739 |
+
pred_active_BxC[pad_mask_NxC] = audio_pad_value
|
740 |
+
pred_BxC[padding_mask_Bx] = pred_active_BxC
|
741 |
+
eos_countdown_Bx[padding_mask_Bx] -= 1
|
742 |
+
|
743 |
+
# --- Update BOS flag (Original) ---
|
744 |
+
if not bos_over:
|
745 |
+
bos_over = all(
|
746 |
+
dec_step - prefill_step > max_delay_pattern for prefill_step in dec_output.prefill_steps
|
747 |
+
)
|
748 |
+
|
749 |
+
dec_output.update_one(pred_BxC, current_step_idx, not bos_over)
|
750 |
+
|
751 |
+
dec_step += 1
|
752 |
+
|
753 |
+
if verbose and dec_step % 86 == 0:
|
754 |
+
duration = time.time() - start_time
|
755 |
+
if duration > 0:
|
756 |
+
print(
|
757 |
+
f"generate step {dec_step}: speed={86 * batch_size / duration:.3f} tokens/s, realtime factor={batch_size / duration:.3f}x"
|
758 |
+
)
|
759 |
+
start_time = time.time()
|
760 |
+
|
761 |
+
# --- Finalize and Extract Output ---
|
762 |
+
final_step = dec_step + 1
|
763 |
+
|
764 |
+
finished_step_Bx[finished_step_Bx == -1] = final_step - max_delay_pattern
|
765 |
+
|
766 |
+
prefill_steps_tensor = torch.tensor(dec_output.prefill_steps, device=self.device)
|
767 |
+
lengths_Bx = finished_step_Bx - prefill_steps_tensor
|
768 |
+
lengths_Bx = torch.clamp(lengths_Bx, min=0)
|
769 |
+
|
770 |
+
max_len = lengths_Bx.max().item() + max_delay_pattern
|
771 |
+
outputs = []
|
772 |
+
|
773 |
+
if max_len > 0:
|
774 |
+
num_channels = self.config.decoder_config.num_channels
|
775 |
+
audio_pad_value = self.config.pad_token_id
|
776 |
+
generated_codes = torch.full(
|
777 |
+
(batch_size, max_len, num_channels),
|
778 |
+
fill_value=audio_pad_value,
|
779 |
+
dtype=torch.long,
|
780 |
+
device=self.device,
|
781 |
+
)
|
782 |
+
|
783 |
+
for i in range(batch_size):
|
784 |
+
start_step = dec_output.prefill_steps[i]
|
785 |
+
actual_len = lengths_Bx[i].item() + max_delay_pattern
|
786 |
+
if actual_len > 0:
|
787 |
+
tokens_to_copy = dec_output.generated_tokens[i, start_step : start_step + actual_len, :]
|
788 |
+
generated_codes[i, :actual_len, :] = tokens_to_copy
|
789 |
+
|
790 |
+
if verbose:
|
791 |
+
avg_steps = lengths_Bx.float().mean().item()
|
792 |
+
total_duration = time.time() - total_start_time
|
793 |
+
print(f"generate: avg steps={avg_steps:.1f}, total duration={total_duration:.3f}s")
|
794 |
+
|
795 |
+
del dec_state
|
796 |
+
|
797 |
+
outputs = self._generate_output(generated_codes, lengths_Bx)
|
798 |
+
else:
|
799 |
+
print("Warning: Nothing generated for any sequence in the batch.")
|
800 |
+
outputs = [None] * batch_size
|
801 |
+
|
802 |
+
return outputs if batch_size > 1 else outputs[0]
|
state.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from .config import DiaConfig
|
7 |
+
|
8 |
+
|
9 |
+
def create_attn_mask(
|
10 |
+
q_padding_mask_1d: torch.Tensor,
|
11 |
+
k_padding_mask_1d: torch.Tensor,
|
12 |
+
device: torch.device,
|
13 |
+
is_causal: bool = False,
|
14 |
+
) -> torch.Tensor:
|
15 |
+
"""
|
16 |
+
Creates the attention mask (self or cross) mimicking JAX segment ID logic.
|
17 |
+
"""
|
18 |
+
# B1, Tq = q_padding_mask_1d.shape
|
19 |
+
# B2, Tk = k_padding_mask_1d.shape
|
20 |
+
|
21 |
+
p_mask_q = q_padding_mask_1d.unsqueeze(2) # Shape [B, Tq, 1]
|
22 |
+
p_mask_k = k_padding_mask_1d.unsqueeze(1) # Shape [B, 1, Tk]
|
23 |
+
|
24 |
+
# Condition A: Non-padding query attends to non-padding key
|
25 |
+
non_pad_attends_non_pad = p_mask_q & p_mask_k # Shape [B, Tq, Tk]
|
26 |
+
|
27 |
+
# Condition B: Padding query attends to padding key
|
28 |
+
pad_attends_pad = (~p_mask_q) & (~p_mask_k) # Shape [B, Tq, Tk]
|
29 |
+
|
30 |
+
# Combine: True if padding status is compatible (both non-pad OR both pad)
|
31 |
+
mask = non_pad_attends_non_pad | pad_attends_pad # Shape [B, Tq, Tk]
|
32 |
+
|
33 |
+
if is_causal:
|
34 |
+
# assert Tq == Tk, "Causal mask requires query and key sequence lengths to be equal"
|
35 |
+
causal_mask_2d = torch.tril(torch.ones_like(mask[0], dtype=torch.bool, device=device)) # Shape [B, Tq, Tk]
|
36 |
+
causal_mask = mask & causal_mask_2d # Shape [B, Tq, Tk]
|
37 |
+
return causal_mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
|
38 |
+
else:
|
39 |
+
return mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
|
40 |
+
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class EncoderInferenceState:
|
44 |
+
"""Parameters specifically for encoder inference."""
|
45 |
+
|
46 |
+
max_seq_len: int
|
47 |
+
device: torch.device
|
48 |
+
positions: torch.Tensor
|
49 |
+
padding_mask: torch.Tensor
|
50 |
+
attn_mask: torch.Tensor
|
51 |
+
|
52 |
+
@classmethod
|
53 |
+
def new(cls, config: DiaConfig, cond_src: torch.Tensor) -> "EncoderInferenceState":
|
54 |
+
"""Creates EtorchrInferenceParams from DiaConfig and a device."""
|
55 |
+
device = cond_src.device
|
56 |
+
|
57 |
+
positions = torch.arange(
|
58 |
+
config.encoder_config.max_position_embeddings, dtype=torch.float32, device=device
|
59 |
+
).unsqueeze(0)
|
60 |
+
padding_mask = (cond_src.squeeze(1) != 0).to(device).repeat_interleave(2, dim=0)
|
61 |
+
attn_mask = create_attn_mask(padding_mask, padding_mask, device, is_causal=False)
|
62 |
+
|
63 |
+
return cls(
|
64 |
+
max_seq_len=config.encoder_config.max_position_embeddings,
|
65 |
+
device=device,
|
66 |
+
positions=positions,
|
67 |
+
padding_mask=padding_mask,
|
68 |
+
attn_mask=attn_mask,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
class KVCache(torch.nn.Module):
|
73 |
+
k: torch.Tensor
|
74 |
+
v: torch.Tensor
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
batch_size: int,
|
79 |
+
num_heads: int,
|
80 |
+
max_len: int,
|
81 |
+
head_dim: int,
|
82 |
+
dtype: torch.dtype,
|
83 |
+
device: torch.device,
|
84 |
+
k: torch.Tensor | None = None,
|
85 |
+
v: torch.Tensor | None = None,
|
86 |
+
):
|
87 |
+
k = torch.zeros((2 * batch_size, num_heads, max_len, head_dim), dtype=dtype, device=device) if k is None else k
|
88 |
+
v = torch.zeros((2 * batch_size, num_heads, max_len, head_dim), dtype=dtype, device=device) if v is None else v
|
89 |
+
super().__init__()
|
90 |
+
|
91 |
+
self.register_buffer("k", k)
|
92 |
+
self.register_buffer("v", v)
|
93 |
+
|
94 |
+
@classmethod
|
95 |
+
def from_kv(cls, k: torch.Tensor, v: torch.Tensor) -> "KVCache":
|
96 |
+
return cls(
|
97 |
+
batch_size=k.shape[0] // 2,
|
98 |
+
num_heads=k.shape[1],
|
99 |
+
max_len=k.shape[2],
|
100 |
+
head_dim=k.shape[3],
|
101 |
+
dtype=k.dtype,
|
102 |
+
device=k.device,
|
103 |
+
k=k,
|
104 |
+
v=v,
|
105 |
+
)
|
106 |
+
|
107 |
+
def update(self, k: torch.Tensor, v: torch.Tensor, current_idx: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
108 |
+
k_out, v_out = self.k, self.v
|
109 |
+
k_out[:, :, current_idx, :] = k
|
110 |
+
v_out[:, :, current_idx, :] = v
|
111 |
+
return self.k, self.v
|
112 |
+
|
113 |
+
def prefill(self, k: torch.Tensor, v: torch.Tensor):
|
114 |
+
prefill_len = k.shape[2]
|
115 |
+
self.k[:, :, :prefill_len, :] = k
|
116 |
+
self.v[:, :, :prefill_len, :] = v
|
117 |
+
|
118 |
+
|
119 |
+
@dataclass
|
120 |
+
class DecoderInferenceState:
|
121 |
+
"""Parameters specifically for decoder inference."""
|
122 |
+
|
123 |
+
device: torch.device
|
124 |
+
dtype: torch.dtype
|
125 |
+
enc_out: torch.Tensor
|
126 |
+
enc_positions: torch.Tensor
|
127 |
+
dec_positions: torch.Tensor
|
128 |
+
self_attn_cache: list[KVCache]
|
129 |
+
cross_attn_cache: list[KVCache]
|
130 |
+
casual_attn_mask: torch.Tensor
|
131 |
+
cross_attn_mask: torch.Tensor
|
132 |
+
|
133 |
+
@classmethod
|
134 |
+
def new(
|
135 |
+
cls,
|
136 |
+
config: DiaConfig,
|
137 |
+
enc_state: EncoderInferenceState,
|
138 |
+
enc_out: torch.Tensor,
|
139 |
+
dec_cross_attn_cache: list[KVCache],
|
140 |
+
compute_dtype: torch.dtype,
|
141 |
+
max_generation_length: Optional[int] = None,
|
142 |
+
) -> "DecoderInferenceState":
|
143 |
+
"""Creates DecoderInferenceParams from DiaConfig and a device."""
|
144 |
+
device = enc_out.device
|
145 |
+
max_audio_len = max_generation_length or config.decoder_config.max_position_embeddings
|
146 |
+
batch_size = enc_out.shape[0] // 2
|
147 |
+
|
148 |
+
dec_positions = torch.full((2 * batch_size, 1), fill_value=0, dtype=torch.int32, device=device)
|
149 |
+
causal_mask = torch.tril(torch.ones(max_audio_len, max_audio_len, dtype=torch.bool, device=device))
|
150 |
+
dec_mask = torch.ones((2 * batch_size, 1), dtype=torch.bool, device=device)
|
151 |
+
cross_attn_mask = create_attn_mask(dec_mask, enc_state.padding_mask, device, is_causal=False)
|
152 |
+
|
153 |
+
self_attn_cache = [
|
154 |
+
KVCache(
|
155 |
+
batch_size,
|
156 |
+
config.decoder_config.num_key_value_heads,
|
157 |
+
max_audio_len,
|
158 |
+
config.decoder_config.head_dim,
|
159 |
+
compute_dtype,
|
160 |
+
device,
|
161 |
+
)
|
162 |
+
for _ in range(config.decoder_config.num_hidden_layers)
|
163 |
+
]
|
164 |
+
|
165 |
+
return cls(
|
166 |
+
device=device,
|
167 |
+
dtype=compute_dtype,
|
168 |
+
enc_out=enc_out,
|
169 |
+
enc_positions=enc_state.positions,
|
170 |
+
dec_positions=dec_positions,
|
171 |
+
self_attn_cache=self_attn_cache,
|
172 |
+
cross_attn_cache=dec_cross_attn_cache,
|
173 |
+
casual_attn_mask=causal_mask,
|
174 |
+
cross_attn_mask=cross_attn_mask,
|
175 |
+
)
|
176 |
+
|
177 |
+
def prepare_step(self, step_from: int, step_to: int | None = None) -> None:
|
178 |
+
if step_to is None:
|
179 |
+
step_to = step_from + 1
|
180 |
+
self.dec_positions = torch.arange(step_from, step_to, dtype=torch.int32, device=self.device).unsqueeze(0)
|
181 |
+
|
182 |
+
|
183 |
+
@dataclass
|
184 |
+
class DecoderOutput:
|
185 |
+
generated_tokens: torch.Tensor
|
186 |
+
prefill_steps: list[int]
|
187 |
+
|
188 |
+
@classmethod
|
189 |
+
def new(cls, batch_size: int, config: DiaConfig, device: torch.device) -> "DecoderOutput":
|
190 |
+
max_audio_len = config.decoder_config.max_position_embeddings
|
191 |
+
return cls(
|
192 |
+
generated_tokens=torch.full(
|
193 |
+
(batch_size, max_audio_len, config.decoder_config.num_channels),
|
194 |
+
fill_value=-1,
|
195 |
+
dtype=torch.int,
|
196 |
+
device=device,
|
197 |
+
),
|
198 |
+
prefill_steps=[],
|
199 |
+
)
|
200 |
+
|
201 |
+
def get_tokens_at(self, step_from: int, step_to: int | None = None) -> torch.Tensor:
|
202 |
+
if step_to is None:
|
203 |
+
step_to = step_from + 1
|
204 |
+
return self.generated_tokens[:, step_from:step_to, :]
|
205 |
+
|
206 |
+
def update_one(self, dec_out: torch.Tensor, step: int, apply_mask: bool = False):
|
207 |
+
dec_out = dec_out.to(self.generated_tokens.dtype)
|
208 |
+
if apply_mask:
|
209 |
+
mask = self.generated_tokens[:, step, :] == -1
|
210 |
+
self.generated_tokens[:, step, :] = torch.where(mask, dec_out, self.generated_tokens[:, step, :])
|
211 |
+
else:
|
212 |
+
self.generated_tokens[:, step, :] = dec_out
|
213 |
+
|
214 |
+
def prefill(self, dec_out: torch.Tensor, prefill_steps: list[int]):
|
215 |
+
length = dec_out.shape[1]
|
216 |
+
self.generated_tokens[:, :length, :] = dec_out
|
217 |
+
self.prefill_steps = prefill_steps
|