File size: 18,996 Bytes
069156c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import argparse
import contextlib
import io
import random
import tempfile
import time
from pathlib import Path
from typing import Optional, Tuple
import gradio as gr
import numpy as np
import soundfile as sf
import torch
from dia.model import Dia
# --- Global Setup ---
parser = argparse.ArgumentParser(description="Gradio interface for Nari TTS")
parser.add_argument("--device", type=str, default=None, help="Force device (e.g., 'cuda', 'mps', 'cpu')")
parser.add_argument("--share", action="store_true", help="Enable Gradio sharing")
args = parser.parse_args()
# Determine device
if args.device:
device = torch.device(args.device)
elif torch.cuda.is_available():
device = torch.device("cuda")
# Simplified MPS check for broader compatibility
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
# Basic check is usually sufficient, detailed check can be problematic
device = torch.device("mps")
else:
device = torch.device("cpu")
print(f"Using device: {device}")
# Load Nari model and config
print("Loading Nari model...")
try:
dtype_map = {
"cpu": "float32",
"mps": "float32", # Apple M series β better with float32
"cuda": "float16", # NVIDIA β better with float16
}
dtype = dtype_map.get(device.type, "float16")
print(f"Using device: {device}, attempting to load model with {dtype}")
model = Dia.from_pretrained("nari-labs/Dia-1.6B-0626", compute_dtype=dtype, device=device)
except Exception as e:
print(f"Error loading Nari model: {e}")
raise
def set_seed(seed: int):
"""Sets the random seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def run_inference(
text_input: str,
audio_prompt_text_input: str,
audio_prompt_input: Optional[Tuple[int, np.ndarray]],
max_new_tokens: int,
cfg_scale: float,
temperature: float,
top_p: float,
cfg_filter_top_k: int,
speed_factor: float,
seed: Optional[int] = None,
):
"""
Runs Nari inference using the globally loaded model and provided inputs.
Uses temporary files for text and audio prompt compatibility with inference.generate.
"""
global model, device # Access global model, config, device
console_output_buffer = io.StringIO()
with contextlib.redirect_stdout(console_output_buffer):
# Prepend transcript text if audio_prompt provided
if audio_prompt_input and audio_prompt_text_input and not audio_prompt_text_input.isspace():
text_input = audio_prompt_text_input + "\n" + text_input
text_input = text_input.strip()
if audio_prompt_input and (not audio_prompt_text_input or audio_prompt_text_input.isspace()):
raise gr.Error("Audio Prompt Text input cannot be empty.")
if not text_input or text_input.isspace():
raise gr.Error("Text input cannot be empty.")
# Preprocess Audio
temp_txt_file_path = None
temp_audio_prompt_path = None
output_audio = (44100, np.zeros(1, dtype=np.float32))
try:
prompt_path_for_generate = None
if audio_prompt_input is not None:
sr, audio_data = audio_prompt_input
# Check if audio_data is valid
if audio_data is None or audio_data.size == 0 or audio_data.max() == 0: # Check for silence/empty
gr.Warning("Audio prompt seems empty or silent, ignoring prompt.")
else:
# Save prompt audio to a temporary WAV file
with tempfile.NamedTemporaryFile(mode="wb", suffix=".wav", delete=False) as f_audio:
temp_audio_prompt_path = f_audio.name # Store path for cleanup
# Basic audio preprocessing for consistency
# Convert to float32 in [-1, 1] range if integer type
if np.issubdtype(audio_data.dtype, np.integer):
max_val = np.iinfo(audio_data.dtype).max
audio_data = audio_data.astype(np.float32) / max_val
elif not np.issubdtype(audio_data.dtype, np.floating):
gr.Warning(f"Unsupported audio prompt dtype {audio_data.dtype}, attempting conversion.")
# Attempt conversion, might fail for complex types
try:
audio_data = audio_data.astype(np.float32)
except Exception as conv_e:
raise gr.Error(f"Failed to convert audio prompt to float32: {conv_e}")
# Ensure mono (average channels if stereo)
if audio_data.ndim > 1:
if audio_data.shape[0] == 2: # Assume (2, N)
audio_data = np.mean(audio_data, axis=0)
elif audio_data.shape[1] == 2: # Assume (N, 2)
audio_data = np.mean(audio_data, axis=1)
else:
gr.Warning(
f"Audio prompt has unexpected shape {audio_data.shape}, taking first channel/axis."
)
audio_data = (
audio_data[0] if audio_data.shape[0] < audio_data.shape[1] else audio_data[:, 0]
)
audio_data = np.ascontiguousarray(audio_data) # Ensure contiguous after slicing/mean
# Write using soundfile
try:
sf.write(
temp_audio_prompt_path, audio_data, sr, subtype="FLOAT"
) # Explicitly use FLOAT subtype
prompt_path_for_generate = temp_audio_prompt_path
print(f"Created temporary audio prompt file: {temp_audio_prompt_path} (orig sr: {sr})")
except Exception as write_e:
print(f"Error writing temporary audio file: {write_e}")
raise gr.Error(f"Failed to save audio prompt: {write_e}")
# Set and Display Generation Seed
if seed is None or seed < 0:
seed = random.randint(0, 2**32 - 1)
print(f"\nNo seed provided, generated random seed: {seed}\n")
else:
print(f"\nUsing user-selected seed: {seed}\n")
set_seed(seed)
# Run Generation
print(f'Generating speech: \n"{text_input}"\n')
start_time = time.time()
# Use torch.inference_mode() context manager for the generation call
with torch.inference_mode():
output_audio_np = model.generate(
text_input,
max_tokens=max_new_tokens,
cfg_scale=cfg_scale,
temperature=temperature,
top_p=top_p,
cfg_filter_top_k=cfg_filter_top_k, # Pass the value here
use_torch_compile=False, # Keep False for Gradio stability
audio_prompt=prompt_path_for_generate,
verbose=True,
)
end_time = time.time()
print(f"Generation finished in {end_time - start_time:.2f} seconds.\n")
# 4. Convert Codes to Audio
if output_audio_np is not None:
# Get sample rate from the loaded DAC model
output_sr = 44100
# --- Slow down audio ---
original_len = len(output_audio_np)
# Ensure speed_factor is positive and not excessively small/large to avoid issues
speed_factor = max(0.1, min(speed_factor, 5.0))
target_len = int(original_len / speed_factor) # Target length based on speed_factor
if target_len != original_len and target_len > 0: # Only interpolate if length changes and is valid
x_original = np.arange(original_len)
x_resampled = np.linspace(0, original_len - 1, target_len)
resampled_audio_np = np.interp(x_resampled, x_original, output_audio_np)
output_audio = (
output_sr,
resampled_audio_np.astype(np.float32),
) # Use resampled audio
print(
f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed."
)
else:
output_audio = (
output_sr,
output_audio_np,
) # Keep original if calculation fails or no change
print(f"Skipping audio speed adjustment (factor: {speed_factor:.2f}).")
# --- End slowdown ---
print(f"Audio conversion successful. Final shape: {output_audio[1].shape}, Sample Rate: {output_sr}")
# Explicitly convert to int16 to prevent Gradio warning
if output_audio[1].dtype == np.float32 or output_audio[1].dtype == np.float64:
audio_for_gradio = np.clip(output_audio[1], -1.0, 1.0)
audio_for_gradio = (audio_for_gradio * 32767).astype(np.int16)
output_audio = (output_sr, audio_for_gradio)
print("Converted audio to int16 for Gradio output.")
else:
print("\nGeneration finished, but no valid tokens were produced.")
# Return default silence
gr.Warning("Generation produced no output.")
except Exception as e:
print(f"Error during inference: {e}")
import traceback
traceback.print_exc()
# Re-raise as Gradio error to display nicely in the UI
raise gr.Error(f"Inference failed: {e}")
finally:
# Cleanup Temporary Files defensively
if temp_txt_file_path and Path(temp_txt_file_path).exists():
try:
Path(temp_txt_file_path).unlink()
print(f"Deleted temporary text file: {temp_txt_file_path}")
except OSError as e:
print(f"Warning: Error deleting temporary text file {temp_txt_file_path}: {e}")
if temp_audio_prompt_path and Path(temp_audio_prompt_path).exists():
try:
Path(temp_audio_prompt_path).unlink()
print(f"Deleted temporary audio prompt file: {temp_audio_prompt_path}")
except OSError as e:
print(f"Warning: Error deleting temporary audio prompt file {temp_audio_prompt_path}: {e}")
# After generation, capture the printed output
console_output = console_output_buffer.getvalue()
return output_audio, seed, console_output
# --- Create Gradio Interface ---
css = """
#col-container {max-width: 90%; margin-left: auto; margin-right: auto;}
"""
# Attempt to load default text from example.txt
default_text = "[S1] Dia is an open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] Wow. Amazing. (laughs) \n[S2] Try it now on Git hub or Hugging Face."
example_txt_path = Path("./example.txt")
if example_txt_path.exists():
try:
default_text = example_txt_path.read_text(encoding="utf-8").strip()
if not default_text: # Handle empty example file
default_text = "Example text file was empty."
except Exception as e:
print(f"Warning: Could not read example.txt: {e}")
# Build Gradio UI
with gr.Blocks(css=css, theme="gradio/dark") as demo:
gr.Markdown("# Nari Text-to-Speech Synthesis")
with gr.Row(equal_height=False):
with gr.Column(scale=1):
with gr.Accordion("Audio Reference Prompt (Optional)", open=False):
audio_prompt_input = gr.Audio(
label="Audio Prompt (Optional)",
show_label=True,
sources=["upload", "microphone"],
type="numpy",
)
audio_prompt_text_input = gr.Textbox(
label="Transcript of Audio Prompt (Required if using Audio Prompt)",
placeholder="Enter text here...",
value="",
lines=5, # Increased lines
)
text_input = gr.Textbox(
label="Text To Generate",
placeholder="Enter text here...",
value=default_text,
lines=5, # Increased lines
)
with gr.Accordion("Generation Parameters", open=False):
max_new_tokens = gr.Slider(
label="Max New Tokens (Audio Length)",
minimum=860,
maximum=3072,
value=model.config.decoder_config.max_position_embeddings, # Use config default if available, else fallback
step=50,
info="Controls the maximum length of the generated audio (more tokens = longer audio).",
)
cfg_scale = gr.Slider(
label="CFG Scale (Guidance Strength)",
minimum=1.0,
maximum=5.0,
value=3.0, # Default from inference.py
step=0.1,
info="Higher values increase adherence to the text prompt.",
)
temperature = gr.Slider(
label="Temperature (Randomness)",
minimum=1.0,
maximum=2.5,
value=1.8, # Default from inference.py
step=0.05,
info="Lower values make the output more deterministic, higher values increase randomness.",
)
top_p = gr.Slider(
label="Top P (Nucleus Sampling)",
minimum=0.70,
maximum=1.0,
value=0.95, # Default from inference.py
step=0.01,
info="Filters vocabulary to the most likely tokens cumulatively reaching probability P.",
)
cfg_filter_top_k = gr.Slider(
label="CFG Filter Top K",
minimum=15,
maximum=100,
value=45,
step=1,
info="Top k filter for CFG guidance.",
)
speed_factor_slider = gr.Slider(
label="Speed Factor",
minimum=0.8,
maximum=1.0,
value=1.0,
step=0.02,
info="Adjusts the speed of the generated audio (1.0 = original speed).",
)
seed_input = gr.Number(
label="Generation Seed (Optional)",
value=-1,
precision=0, # No decimal points
step=1,
interactive=True,
info="Set a generation seed for reproducible outputs. Leave empty or -1 for random seed.",
)
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column(scale=1):
audio_output = gr.Audio(
label="Generated Audio",
type="numpy",
autoplay=False,
)
seed_output = gr.Textbox(label="Generation Seed", interactive=False)
console_output = gr.Textbox(label="Console Output Log", lines=10, interactive=False)
# Link button click to function
run_button.click(
fn=run_inference,
inputs=[
text_input,
audio_prompt_text_input,
audio_prompt_input,
max_new_tokens,
cfg_scale,
temperature,
top_p,
cfg_filter_top_k,
speed_factor_slider,
seed_input,
],
outputs=[
audio_output,
seed_output,
console_output,
], # Add status_output here if using it
api_name="generate_audio",
)
# Add examples (ensure the prompt path is correct or remove it if example file doesn't exist)
example_prompt_path = "./example_prompt.mp3" # Adjust if needed
examples_list = [
[
"[S1] Oh fire! Oh my goodness! What's the procedure? What to we do people? The smoke could be coming through an air duct! \n[S2] Oh my god! Okay.. it's happening. Everybody stay calm! \n[S1] What's the procedure... \n[S2] Everybody stay fucking calm!!!... Everybody fucking calm down!!!!! \n[S1] No! No! If you touch the handle, if its hot there might be a fire down the hallway! ",
None,
3072,
3.0,
1.8,
0.95,
45,
1.0,
],
[
"[S1] Open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] I'm biased, but I think we clearly won. \n[S2] Hard to disagree. (laughs) \n[S1] Thanks for listening to this demo. \n[S2] Try it now on Git hub and Hugging Face. \n[S1] If you liked our model, please give us a star and share to your friends. \n[S2] This was Nari Labs.",
example_prompt_path if Path(example_prompt_path).exists() else None,
3072,
3.0,
1.8,
0.95,
45,
1.0,
],
]
if examples_list:
gr.Examples(
examples=examples_list,
inputs=[
text_input,
audio_prompt_input,
max_new_tokens,
cfg_scale,
temperature,
top_p,
cfg_filter_top_k,
speed_factor_slider,
seed_input,
],
outputs=[audio_output],
fn=run_inference,
cache_examples=False,
label="Examples (Click to Run)",
)
else:
gr.Markdown("_(No examples configured or example prompt file missing)_")
# --- Launch the App ---
if __name__ == "__main__":
print("Launching Gradio interface...")
# set `GRADIO_SERVER_NAME`, `GRADIO_SERVER_PORT` env vars to override default values
# use `GRADIO_SERVER_NAME=0.0.0.0` for Docker
demo.launch(share=args.share)
|