File size: 18,996 Bytes
069156c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import argparse
import contextlib
import io
import random
import tempfile
import time
from pathlib import Path
from typing import Optional, Tuple

import gradio as gr
import numpy as np
import soundfile as sf
import torch

from dia.model import Dia


# --- Global Setup ---
parser = argparse.ArgumentParser(description="Gradio interface for Nari TTS")
parser.add_argument("--device", type=str, default=None, help="Force device (e.g., 'cuda', 'mps', 'cpu')")
parser.add_argument("--share", action="store_true", help="Enable Gradio sharing")

args = parser.parse_args()


# Determine device
if args.device:
    device = torch.device(args.device)
elif torch.cuda.is_available():
    device = torch.device("cuda")
# Simplified MPS check for broader compatibility
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
    # Basic check is usually sufficient, detailed check can be problematic
    device = torch.device("mps")
else:
    device = torch.device("cpu")

print(f"Using device: {device}")

# Load Nari model and config
print("Loading Nari model...")
try:
    dtype_map = {
        "cpu": "float32",
        "mps": "float32",  # Apple M series – better with float32
        "cuda": "float16",  # NVIDIA – better with float16
    }

    dtype = dtype_map.get(device.type, "float16")
    print(f"Using device: {device}, attempting to load model with {dtype}")
    model = Dia.from_pretrained("nari-labs/Dia-1.6B-0626", compute_dtype=dtype, device=device)
except Exception as e:
    print(f"Error loading Nari model: {e}")
    raise


def set_seed(seed: int):
    """Sets the random seed for reproducibility."""
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def run_inference(
    text_input: str,
    audio_prompt_text_input: str,
    audio_prompt_input: Optional[Tuple[int, np.ndarray]],
    max_new_tokens: int,
    cfg_scale: float,
    temperature: float,
    top_p: float,
    cfg_filter_top_k: int,
    speed_factor: float,
    seed: Optional[int] = None,
):
    """
    Runs Nari inference using the globally loaded model and provided inputs.
    Uses temporary files for text and audio prompt compatibility with inference.generate.
    """
    global model, device  # Access global model, config, device
    console_output_buffer = io.StringIO()

    with contextlib.redirect_stdout(console_output_buffer):
        # Prepend transcript text if audio_prompt provided
        if audio_prompt_input and audio_prompt_text_input and not audio_prompt_text_input.isspace():
            text_input = audio_prompt_text_input + "\n" + text_input
            text_input = text_input.strip()

        if audio_prompt_input and (not audio_prompt_text_input or audio_prompt_text_input.isspace()):
            raise gr.Error("Audio Prompt Text input cannot be empty.")

        if not text_input or text_input.isspace():
            raise gr.Error("Text input cannot be empty.")

        # Preprocess Audio
        temp_txt_file_path = None
        temp_audio_prompt_path = None
        output_audio = (44100, np.zeros(1, dtype=np.float32))

        try:
            prompt_path_for_generate = None
            if audio_prompt_input is not None:
                sr, audio_data = audio_prompt_input
                # Check if audio_data is valid
                if audio_data is None or audio_data.size == 0 or audio_data.max() == 0:  # Check for silence/empty
                    gr.Warning("Audio prompt seems empty or silent, ignoring prompt.")
                else:
                    # Save prompt audio to a temporary WAV file
                    with tempfile.NamedTemporaryFile(mode="wb", suffix=".wav", delete=False) as f_audio:
                        temp_audio_prompt_path = f_audio.name  # Store path for cleanup

                        # Basic audio preprocessing for consistency
                        # Convert to float32 in [-1, 1] range if integer type
                        if np.issubdtype(audio_data.dtype, np.integer):
                            max_val = np.iinfo(audio_data.dtype).max
                            audio_data = audio_data.astype(np.float32) / max_val
                        elif not np.issubdtype(audio_data.dtype, np.floating):
                            gr.Warning(f"Unsupported audio prompt dtype {audio_data.dtype}, attempting conversion.")
                            # Attempt conversion, might fail for complex types
                            try:
                                audio_data = audio_data.astype(np.float32)
                            except Exception as conv_e:
                                raise gr.Error(f"Failed to convert audio prompt to float32: {conv_e}")

                        # Ensure mono (average channels if stereo)
                        if audio_data.ndim > 1:
                            if audio_data.shape[0] == 2:  # Assume (2, N)
                                audio_data = np.mean(audio_data, axis=0)
                            elif audio_data.shape[1] == 2:  # Assume (N, 2)
                                audio_data = np.mean(audio_data, axis=1)
                            else:
                                gr.Warning(
                                    f"Audio prompt has unexpected shape {audio_data.shape}, taking first channel/axis."
                                )
                                audio_data = (
                                    audio_data[0] if audio_data.shape[0] < audio_data.shape[1] else audio_data[:, 0]
                                )
                            audio_data = np.ascontiguousarray(audio_data)  # Ensure contiguous after slicing/mean

                        # Write using soundfile
                        try:
                            sf.write(
                                temp_audio_prompt_path, audio_data, sr, subtype="FLOAT"
                            )  # Explicitly use FLOAT subtype
                            prompt_path_for_generate = temp_audio_prompt_path
                            print(f"Created temporary audio prompt file: {temp_audio_prompt_path} (orig sr: {sr})")
                        except Exception as write_e:
                            print(f"Error writing temporary audio file: {write_e}")
                            raise gr.Error(f"Failed to save audio prompt: {write_e}")

            # Set and Display Generation Seed
            if seed is None or seed < 0:
                seed = random.randint(0, 2**32 - 1)
                print(f"\nNo seed provided, generated random seed: {seed}\n")
            else:
                print(f"\nUsing user-selected seed: {seed}\n")
            set_seed(seed)

            # Run Generation
            print(f'Generating speech: \n"{text_input}"\n')

            start_time = time.time()

            # Use torch.inference_mode() context manager for the generation call
            with torch.inference_mode():
                output_audio_np = model.generate(
                    text_input,
                    max_tokens=max_new_tokens,
                    cfg_scale=cfg_scale,
                    temperature=temperature,
                    top_p=top_p,
                    cfg_filter_top_k=cfg_filter_top_k,  # Pass the value here
                    use_torch_compile=False,  # Keep False for Gradio stability
                    audio_prompt=prompt_path_for_generate,
                    verbose=True,
                )

            end_time = time.time()
            print(f"Generation finished in {end_time - start_time:.2f} seconds.\n")

            # 4. Convert Codes to Audio
            if output_audio_np is not None:
                # Get sample rate from the loaded DAC model
                output_sr = 44100

                # --- Slow down audio ---
                original_len = len(output_audio_np)
                # Ensure speed_factor is positive and not excessively small/large to avoid issues
                speed_factor = max(0.1, min(speed_factor, 5.0))
                target_len = int(original_len / speed_factor)  # Target length based on speed_factor
                if target_len != original_len and target_len > 0:  # Only interpolate if length changes and is valid
                    x_original = np.arange(original_len)
                    x_resampled = np.linspace(0, original_len - 1, target_len)
                    resampled_audio_np = np.interp(x_resampled, x_original, output_audio_np)
                    output_audio = (
                        output_sr,
                        resampled_audio_np.astype(np.float32),
                    )  # Use resampled audio
                    print(
                        f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed."
                    )
                else:
                    output_audio = (
                        output_sr,
                        output_audio_np,
                    )  # Keep original if calculation fails or no change
                    print(f"Skipping audio speed adjustment (factor: {speed_factor:.2f}).")
                # --- End slowdown ---

                print(f"Audio conversion successful. Final shape: {output_audio[1].shape}, Sample Rate: {output_sr}")

                # Explicitly convert to int16 to prevent Gradio warning
                if output_audio[1].dtype == np.float32 or output_audio[1].dtype == np.float64:
                    audio_for_gradio = np.clip(output_audio[1], -1.0, 1.0)
                    audio_for_gradio = (audio_for_gradio * 32767).astype(np.int16)
                    output_audio = (output_sr, audio_for_gradio)
                    print("Converted audio to int16 for Gradio output.")

            else:
                print("\nGeneration finished, but no valid tokens were produced.")
                # Return default silence
                gr.Warning("Generation produced no output.")

        except Exception as e:
            print(f"Error during inference: {e}")
            import traceback

            traceback.print_exc()
            # Re-raise as Gradio error to display nicely in the UI
            raise gr.Error(f"Inference failed: {e}")

        finally:
            # Cleanup Temporary Files defensively
            if temp_txt_file_path and Path(temp_txt_file_path).exists():
                try:
                    Path(temp_txt_file_path).unlink()
                    print(f"Deleted temporary text file: {temp_txt_file_path}")
                except OSError as e:
                    print(f"Warning: Error deleting temporary text file {temp_txt_file_path}: {e}")
            if temp_audio_prompt_path and Path(temp_audio_prompt_path).exists():
                try:
                    Path(temp_audio_prompt_path).unlink()
                    print(f"Deleted temporary audio prompt file: {temp_audio_prompt_path}")
                except OSError as e:
                    print(f"Warning: Error deleting temporary audio prompt file {temp_audio_prompt_path}: {e}")

        # After generation, capture the printed output
        console_output = console_output_buffer.getvalue()

    return output_audio, seed, console_output


# --- Create Gradio Interface ---
css = """
#col-container {max-width: 90%; margin-left: auto; margin-right: auto;}
"""
# Attempt to load default text from example.txt
default_text = "[S1] Dia is an open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] Wow. Amazing. (laughs) \n[S2] Try it now on Git hub or Hugging Face."
example_txt_path = Path("./example.txt")
if example_txt_path.exists():
    try:
        default_text = example_txt_path.read_text(encoding="utf-8").strip()
        if not default_text:  # Handle empty example file
            default_text = "Example text file was empty."
    except Exception as e:
        print(f"Warning: Could not read example.txt: {e}")


# Build Gradio UI
with gr.Blocks(css=css, theme="gradio/dark") as demo:
    gr.Markdown("# Nari Text-to-Speech Synthesis")

    with gr.Row(equal_height=False):
        with gr.Column(scale=1):
            with gr.Accordion("Audio Reference Prompt (Optional)", open=False):
                audio_prompt_input = gr.Audio(
                    label="Audio Prompt (Optional)",
                    show_label=True,
                    sources=["upload", "microphone"],
                    type="numpy",
                )
                audio_prompt_text_input = gr.Textbox(
                    label="Transcript of Audio Prompt (Required if using Audio Prompt)",
                    placeholder="Enter text here...",
                    value="",
                    lines=5,  # Increased lines
                )
            text_input = gr.Textbox(
                label="Text To Generate",
                placeholder="Enter text here...",
                value=default_text,
                lines=5,  # Increased lines
            )
            with gr.Accordion("Generation Parameters", open=False):
                max_new_tokens = gr.Slider(
                    label="Max New Tokens (Audio Length)",
                    minimum=860,
                    maximum=3072,
                    value=model.config.decoder_config.max_position_embeddings,  # Use config default if available, else fallback
                    step=50,
                    info="Controls the maximum length of the generated audio (more tokens = longer audio).",
                )
                cfg_scale = gr.Slider(
                    label="CFG Scale (Guidance Strength)",
                    minimum=1.0,
                    maximum=5.0,
                    value=3.0,  # Default from inference.py
                    step=0.1,
                    info="Higher values increase adherence to the text prompt.",
                )
                temperature = gr.Slider(
                    label="Temperature (Randomness)",
                    minimum=1.0,
                    maximum=2.5,
                    value=1.8,  # Default from inference.py
                    step=0.05,
                    info="Lower values make the output more deterministic, higher values increase randomness.",
                )
                top_p = gr.Slider(
                    label="Top P (Nucleus Sampling)",
                    minimum=0.70,
                    maximum=1.0,
                    value=0.95,  # Default from inference.py
                    step=0.01,
                    info="Filters vocabulary to the most likely tokens cumulatively reaching probability P.",
                )
                cfg_filter_top_k = gr.Slider(
                    label="CFG Filter Top K",
                    minimum=15,
                    maximum=100,
                    value=45,
                    step=1,
                    info="Top k filter for CFG guidance.",
                )
                speed_factor_slider = gr.Slider(
                    label="Speed Factor",
                    minimum=0.8,
                    maximum=1.0,
                    value=1.0,
                    step=0.02,
                    info="Adjusts the speed of the generated audio (1.0 = original speed).",
                )
                seed_input = gr.Number(
                    label="Generation Seed (Optional)",
                    value=-1,
                    precision=0,  # No decimal points
                    step=1,
                    interactive=True,
                    info="Set a generation seed for reproducible outputs. Leave empty or -1 for random seed.",
                )

            run_button = gr.Button("Generate Audio", variant="primary")

        with gr.Column(scale=1):
            audio_output = gr.Audio(
                label="Generated Audio",
                type="numpy",
                autoplay=False,
            )
            seed_output = gr.Textbox(label="Generation Seed", interactive=False)
            console_output = gr.Textbox(label="Console Output Log", lines=10, interactive=False)

    # Link button click to function
    run_button.click(
        fn=run_inference,
        inputs=[
            text_input,
            audio_prompt_text_input,
            audio_prompt_input,
            max_new_tokens,
            cfg_scale,
            temperature,
            top_p,
            cfg_filter_top_k,
            speed_factor_slider,
            seed_input,
        ],
        outputs=[
            audio_output,
            seed_output,
            console_output,
        ],  # Add status_output here if using it
        api_name="generate_audio",
    )

    # Add examples (ensure the prompt path is correct or remove it if example file doesn't exist)
    example_prompt_path = "./example_prompt.mp3"  # Adjust if needed
    examples_list = [
        [
            "[S1] Oh fire! Oh my goodness! What's the procedure? What to we do people? The smoke could be coming through an air duct! \n[S2] Oh my god! Okay.. it's happening. Everybody stay calm! \n[S1] What's the procedure... \n[S2] Everybody stay fucking calm!!!... Everybody fucking calm down!!!!! \n[S1] No! No! If you touch the handle, if its hot there might be a fire down the hallway! ",
            None,
            3072,
            3.0,
            1.8,
            0.95,
            45,
            1.0,
        ],
        [
            "[S1] Open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] I'm biased, but I think we clearly won. \n[S2] Hard to disagree. (laughs) \n[S1] Thanks for listening to this demo. \n[S2] Try it now on Git hub and Hugging Face. \n[S1] If you liked our model, please give us a star and share to your friends. \n[S2] This was Nari Labs.",
            example_prompt_path if Path(example_prompt_path).exists() else None,
            3072,
            3.0,
            1.8,
            0.95,
            45,
            1.0,
        ],
    ]

    if examples_list:
        gr.Examples(
            examples=examples_list,
            inputs=[
                text_input,
                audio_prompt_input,
                max_new_tokens,
                cfg_scale,
                temperature,
                top_p,
                cfg_filter_top_k,
                speed_factor_slider,
                seed_input,
            ],
            outputs=[audio_output],
            fn=run_inference,
            cache_examples=False,
            label="Examples (Click to Run)",
        )
    else:
        gr.Markdown("_(No examples configured or example prompt file missing)_")

# --- Launch the App ---
if __name__ == "__main__":
    print("Launching Gradio interface...")

    # set `GRADIO_SERVER_NAME`, `GRADIO_SERVER_PORT` env vars to override default values
    # use `GRADIO_SERVER_NAME=0.0.0.0` for Docker
    demo.launch(share=args.share)