|
from transformers import pipeline
|
|
import gradio as gr
|
|
|
|
|
|
clip_models = [
|
|
"zer0int/CLIP-GmP-ViT-L-14",
|
|
"John6666/zer0int_CLIP-GmP-ViT-L-14",
|
|
"openai/clip-vit-large-patch14",
|
|
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
|
]
|
|
|
|
clip_checkpoint = clip_models[0]
|
|
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification")
|
|
|
|
def postprocess(output):
|
|
return {out["label"]: float(out["score"]) for out in output}
|
|
|
|
|
|
def infer(image, candidate_labels):
|
|
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
|
|
clip_out = clip_detector(image, candidate_labels=candidate_labels)
|
|
return postprocess(clip_out)
|
|
|
|
|
|
def load_clip_model(modelname):
|
|
global clip_detector
|
|
try:
|
|
clip_detector = pipeline(model=modelname, task="zero-shot-image-classification")
|
|
except Exception as e:
|
|
raise gr.Error(f"Model load error: {modelname} {e}")
|
|
return modelname
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("# Test CLIP")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
image_input = gr.Image(type="pil")
|
|
text_input = gr.Textbox(label="Input a list of labels")
|
|
model_input = gr.Dropdown(label="CLIP model", choices=clip_models, value=clip_models[0], allow_custom_value=True, interactive=True)
|
|
run_button = gr.Button("Run", visible=True)
|
|
|
|
with gr.Column():
|
|
clip_output = gr.Label(label = "CLIP Output", num_top_classes=3)
|
|
|
|
examples = [["./baklava.jpg", "baklava, souffle, tiramisu"], ["./cheetah.jpg", "cat, dog"], ["./cat.png", "cat, dog"]]
|
|
gr.Examples(
|
|
examples = examples,
|
|
inputs=[image_input, text_input],
|
|
outputs=[clip_output],
|
|
fn=infer,
|
|
cache_examples=True
|
|
)
|
|
run_button.click(fn=infer,
|
|
inputs=[image_input, text_input],
|
|
outputs=[clip_output])
|
|
model_input.change(load_clip_model, [model_input], [model_input])
|
|
|
|
demo.launch() |