import cv2 import numpy as np import gradio as gr from PIL import Image def resize_to_512(img: Image.Image) -> Image.Image: if img.size != (512, 512): return img.resize((512, 512)) return img def gaussian_blur(img: Image.Image, kernel_size: int): img = resize_to_512(img) img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) blurred = cv2.GaussianBlur(img_cv, (kernel_size | 1, kernel_size | 1), 0) return cv2.cvtColor(blurred, cv2.COLOR_BGR2RGB) def lens_blur(img: Image.Image, max_blur_radius: int): img = resize_to_512(img) original = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) original_rgb = cv2.cvtColor(original, cv2.COLOR_BGR2RGB) # Create synthetic depth map depth_norm = np.zeros((original.shape[0], original.shape[1]), dtype=np.float32) cv2.circle(depth_norm, (original.shape[1] // 2, original.shape[0] // 2), 100, 1, -1) depth_norm = cv2.GaussianBlur(depth_norm, (21, 21), 0) blurred_image = np.zeros_like(original_rgb) for i in range(original.shape[0]): for j in range(original.shape[1]): blur_radius = int(depth_norm[i, j] * max_blur_radius) if blur_radius % 2 == 0: blur_radius += 1 x_min = max(j - blur_radius, 0) x_max = min(j + blur_radius, original.shape[1]) y_min = max(i - blur_radius, 0) y_max = min(i + blur_radius, original.shape[0]) roi = original_rgb[y_min:y_max, x_min:x_max] if blur_radius > 1: blurred_roi = cv2.GaussianBlur(roi, (blur_radius, blur_radius), 0) try: blurred_image[i, j] = blurred_roi[ blur_radius // 2, blur_radius // 2 ] except: blurred_image[i, j] = original_rgb[i, j] else: blurred_image[i, j] = original_rgb[i, j] return blurred_image with gr.Blocks() as demo: gr.Markdown("## Gaussian and Lens Blur App") with gr.Row(): image_input = gr.Image(type="pil", label="Upload an Image") with gr.Row(): kernel_slider = gr.Slider(1, 49, value=11, step=2, label="Gaussian Kernel Size") max_blur_slider = gr.Slider( 1, 50, value=15, step=1, label="Max Lens Blur Radius" ) with gr.Row(): gaussian_output = gr.Image(label="Gaussian Blurred Image") lens_output = gr.Image(label="Depth-Based Lens Blurred Image") with gr.Row(): blur_btn = gr.Button("Apply Blur") blur_btn.click( fn=gaussian_blur, inputs=[image_input, kernel_slider], outputs=gaussian_output ) blur_btn.click( fn=lens_blur, inputs=[image_input, max_blur_slider], outputs=lens_output ) demo.launch()