|
from __future__ import annotations |
|
|
|
from functools import lru_cache |
|
from pathlib import Path |
|
from typing import Optional, Union, List |
|
import re |
|
import tempfile |
|
import requests |
|
import urllib.parse as _urlparse |
|
import os |
|
import gradio as gr |
|
import inspect |
|
import pandas as pd |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
import openai |
|
|
|
|
|
from smolagents.tools import PipelineTool, Tool |
|
from smolagents import ( |
|
CodeAgent, |
|
DuckDuckGoSearchTool, |
|
WikipediaSearchTool, |
|
OpenAIServerModel, |
|
) |
|
|
|
|
|
|
|
|
|
class SpeechToTextTool(PipelineTool): |
|
"""Transcribe *local* audio files via OpenAI Whisper (cached).""" |
|
|
|
default_checkpoint = "openai/whisper-1" |
|
name = "transcriber" |
|
description = ( |
|
"Send a local audio file to OpenAI Whisper (model **whisper‑1**) and " |
|
"return the plain‑text transcript." |
|
) |
|
inputs = { |
|
"audio": { |
|
"type": "string", |
|
"description": "Absolute or relative path to a local audio file.", |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def __call__(self, audio: str) -> str: |
|
return self._transcribe(audio) |
|
|
|
@staticmethod |
|
@lru_cache(maxsize=64) |
|
def _transcribe(audio_path: str) -> str: |
|
path = Path(audio_path).expanduser().resolve() |
|
if not path.is_file(): |
|
raise FileNotFoundError(f"No such audio file: {path}") |
|
|
|
with path.open("rb") as fp: |
|
resp = openai.audio.transcriptions.create( |
|
file=fp, |
|
model="whisper-1", |
|
response_format="text", |
|
) |
|
return resp |
|
|
|
|
|
|
|
|
|
|
|
class ExcelToTextTool(Tool): |
|
"""Render an Excel worksheet as a Markdown table (GitHub flavour).""" |
|
|
|
name = "excel_to_text" |
|
description = ( |
|
"Convert an Excel sheet to Markdown. Accepts sheet name *or* index " |
|
"(as string). Returns a GitHub‑style table without index column." |
|
) |
|
|
|
inputs = { |
|
"excel_path": { |
|
"type": "string", |
|
"description": "Path to the Excel file (.xlsx / .xls).", |
|
}, |
|
"sheet_name": { |
|
"type": "string", |
|
"nullable": True, |
|
"description": ( |
|
"Worksheet name or 0‑based index *as string* (optional; " |
|
"default=first sheet)." |
|
), |
|
}, |
|
} |
|
output_type = "string" |
|
|
|
@lru_cache(maxsize=32) |
|
def forward(self, excel_path: str, sheet_name: Optional[str] = None) -> str: |
|
path = Path(excel_path).expanduser().resolve() |
|
if not path.is_file(): |
|
return f"Error: Excel file not found at {path}" |
|
|
|
import importlib.util as _imp |
|
if not _imp.find_spec("pandas"): |
|
return "Error: pandas library not available in this environment." |
|
import pandas as pd |
|
|
|
try: |
|
sheet: Union[int, str] = 0 |
|
if sheet_name and sheet_name.strip(): |
|
sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name |
|
df = pd.read_excel(path, sheet_name=sheet) |
|
if hasattr(pd.DataFrame, "to_markdown"): |
|
return df.to_markdown(index=False) |
|
from tabulate import tabulate |
|
return tabulate(df, headers="keys", tablefmt="github", showindex=False) |
|
except Exception as exc: |
|
return f"Error reading Excel file: {exc}" |
|
|
|
|
|
|
|
|
|
|
|
class YouTubeQATool(PipelineTool): |
|
"""Answer questions about the spoken content of a YouTube video.""" |
|
|
|
default_checkpoint = "openai/gpt-4o" |
|
name = "youtube_qa" |
|
description = ( |
|
"Given a YouTube URL and a natural‑language *question*, return an answer " |
|
"based solely on the video transcript (no hallucinations)." |
|
) |
|
|
|
inputs = { |
|
"url": { |
|
"type": "string", |
|
"description": "Full YouTube video URL or just the watch ID.", |
|
}, |
|
"question": { |
|
"type": "string", |
|
"description": "Question about the video content (English / French).", |
|
}, |
|
} |
|
output_type = "string" |
|
|
|
_TRANSCRIPT_CACHE: dict[str, str] = {} |
|
|
|
@staticmethod |
|
def _extract_video_id(url: str) -> str: |
|
if len(url) == 11 and "/" not in url: |
|
return url |
|
parsed = _urlparse.urlparse(url) |
|
if parsed.hostname in ("youtu.be",): |
|
return parsed.path.lstrip("/") |
|
if parsed.hostname and "youtube" in parsed.hostname: |
|
qs = _urlparse.parse_qs(parsed.query) |
|
if "v" in qs: |
|
return qs["v"][0] |
|
return parsed.path.split("/")[-1] |
|
raise ValueError("Could not parse YouTube video ID from URL") |
|
|
|
@classmethod |
|
def _get_transcript(cls, video_id: str) -> str: |
|
if video_id in cls._TRANSCRIPT_CACHE: |
|
return cls._TRANSCRIPT_CACHE[video_id] |
|
try: |
|
from youtube_transcript_api import YouTubeTranscriptApi |
|
except ModuleNotFoundError: |
|
return "Error: youtube‑transcript‑api library not installed." |
|
try: |
|
segments: List[dict] = YouTubeTranscriptApi.get_transcript(video_id) |
|
except Exception as exc: |
|
return f"Error fetching transcript: {exc}" |
|
text = " ".join(seg["text"] for seg in segments) |
|
cls._TRANSCRIPT_CACHE[video_id] = text |
|
return text |
|
|
|
def forward(self, url: str, question: str) -> str: |
|
try: |
|
vid = self._extract_video_id(url) |
|
except ValueError as e: |
|
return str(e) |
|
|
|
transcript = self._get_transcript(vid) |
|
if transcript.startswith("Error"): |
|
return transcript |
|
|
|
max_chars = 15000 |
|
if len(transcript) > max_chars: |
|
transcript = transcript[:max_chars] + " …(truncated)…" |
|
|
|
import openai |
|
|
|
system = ( |
|
"You are a meticulous assistant. Answer the user's question about " |
|
"the provided YouTube transcript. If the transcript lacks the " |
|
"information, reply 'I don't know based on the transcript.'" |
|
) |
|
messages = [ |
|
{"role": "system", "content": system}, |
|
{"role": "user", "content": f"Transcript:\n{transcript}"}, |
|
{"role": "user", "content": f"Question: {question}"}, |
|
] |
|
try: |
|
resp = openai.chat.completions.create( |
|
model="gpt-4o", |
|
messages=messages, |
|
temperature=0.2, |
|
max_tokens=256, |
|
) |
|
return resp.choices[0].message.content.strip() |
|
except Exception as exc: |
|
return f"Error generating answer: {exc}" |
|
|
|
|
|
|
|
|
|
class ExtractTextFromImageTool(Tool): |
|
"""OCR helper using **pytesseract** + **Pillow** (if available).""" |
|
|
|
name = "image_ocr" |
|
description = "Extract visible text from a local image file via Tesseract OCR." |
|
inputs = {"image_path": {"type": "string", "description": "Path to an image."}} |
|
output_type = "string" |
|
|
|
@lru_cache(maxsize=32) |
|
def forward(self, image_path: str) -> str: |
|
path = Path(image_path).expanduser().resolve() |
|
if not path.is_file(): |
|
return f"Error: no such image file {path}" |
|
try: |
|
import pytesseract |
|
from PIL import Image |
|
except ModuleNotFoundError: |
|
return "Error: pytesseract or Pillow not installed." |
|
try: |
|
with Image.open(path) as img: |
|
text = pytesseract.image_to_string(img) |
|
return text.strip() or "(No text detected)" |
|
except Exception as exc: |
|
return f"Error extracting text: {exc}" |
|
|
|
|
|
|
|
|
|
|
|
class AnalyzeCSVFileTool(Tool): |
|
"""Quick CSV introspection & basic descriptive stats with pandas.""" |
|
|
|
name = "csv_analyzer" |
|
description = "Load a CSV file and give column info + summary stats." |
|
inputs = { |
|
"file_path": {"type": "string", "description": "Path to CSV file."}, |
|
"query": {"type": "string", "description": "User question (unused for now)."}, |
|
} |
|
output_type = "string" |
|
|
|
@lru_cache(maxsize=16) |
|
def forward(self, file_path: str, query: str) -> str: |
|
path = Path(file_path).expanduser().resolve() |
|
if not path.is_file(): |
|
return f"Error: no such CSV file {path}" |
|
try: |
|
import pandas as pd |
|
except ModuleNotFoundError: |
|
return "Error: pandas not installed." |
|
try: |
|
df = pd.read_csv(path) |
|
desc = df.describe(include="all", datetime_is_numeric=True).T |
|
buf = [f"Loaded CSV with {len(df)} rows × {len(df.columns)} columns", "Columns: " + ", ".join(df.columns), "", "Summary stats:", desc.to_markdown()] |
|
return "\n".join(buf) |
|
except Exception as exc: |
|
return f"Error reading CSV: {exc}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
def download_file_if_any(base_api_url: str, task_id: str) -> str | None: |
|
url = f"{base_api_url}/files/{task_id}" |
|
try: |
|
resp = requests.get(url, timeout=30) |
|
if resp.status_code == 404: |
|
return None |
|
resp.raise_for_status() |
|
except requests.HTTPError: |
|
raise |
|
|
|
filename = task_id |
|
if cd := resp.headers.get("content-disposition"): |
|
if match := re.search(r'filename="([^"]+)"', cd): |
|
filename = match.group(1) |
|
|
|
tmp_dir = Path(tempfile.gettempdir(), "gaia_files") |
|
tmp_dir.mkdir(exist_ok=True) |
|
file_path = tmp_dir / filename |
|
file_path.write_bytes(resp.content) |
|
return str(file_path) |
|
|
|
|
|
|
|
|
|
|
|
class BasicAgent: |
|
_model = OpenAIServerModel(model_id="gpt-4o") |
|
_tools = [ |
|
DuckDuckGoSearchTool(), |
|
WikipediaSearchTool(), |
|
SpeechToTextTool(), |
|
ExcelToTextTool(), |
|
YouTubeQATool(), |
|
AnalyzeCSVFileTool(), |
|
ExtractTextFromImageTool() |
|
] |
|
|
|
def __init__(self) -> None: |
|
self.agent = CodeAgent( |
|
model=self._model, |
|
tools=self._tools, |
|
add_base_tools=True, |
|
additional_authorized_imports=["numpy", "pandas", "csv", "subprocess"], |
|
) |
|
print("BasicAgent initialized with YouTubeQATool.") |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 80 chars): {question[:80]}…") |
|
answer = self.agent.run(question) |
|
print(f"Agent returning answer: {answer}") |
|
return answer |
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |