Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
import copy
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoProcessor, Idefics2ForConditionalGeneration
|
4 |
-
from threading import Thread
|
5 |
import re
|
6 |
-
import time
|
7 |
from PIL import Image
|
8 |
import torch
|
9 |
import spaces
|
@@ -11,7 +9,7 @@ import subprocess
|
|
11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
|
13 |
|
14 |
-
|
15 |
|
16 |
model = Idefics2ForConditionalGeneration.from_pretrained(
|
17 |
"HuggingFaceM4/idefics2-8b",
|
@@ -19,117 +17,35 @@ model = Idefics2ForConditionalGeneration.from_pretrained(
|
|
19 |
_attn_implementation="flash_attention_2",
|
20 |
trust_remote_code=True).to("cuda")
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
def format_user_prompt_with_im_history_and_system_conditioning(
|
27 |
-
user_prompt, chat_history
|
28 |
):
|
29 |
-
""
|
30 |
-
|
31 |
-
It handles the potential image(s), the history and the system conditionning.
|
32 |
-
"""
|
33 |
-
resulting_messages = copy.deepcopy([])
|
34 |
-
resulting_images = []
|
35 |
-
|
36 |
-
# Format history
|
37 |
-
for turn in chat_history:
|
38 |
-
if not resulting_messages or (resulting_messages and resulting_messages[-1]["role"] != "user"):
|
39 |
-
resulting_messages.append(
|
40 |
-
{
|
41 |
-
"role": "user",
|
42 |
-
"content": [],
|
43 |
-
}
|
44 |
-
)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
resulting_messages[-1]["content"].append({"type": "image"})
|
49 |
-
resulting_images.append(Image.open(media))
|
50 |
-
else:
|
51 |
-
user_utterance, assistant_utterance = turn
|
52 |
-
resulting_messages[-1]["content"].append(
|
53 |
-
{"type": "text", "text": user_utterance.strip()}
|
54 |
-
)
|
55 |
-
resulting_messages.append(
|
56 |
-
{
|
57 |
-
"role": "assistant",
|
58 |
-
"content": [
|
59 |
-
{"type": "text", "text": user_utterance.strip()}
|
60 |
-
]
|
61 |
-
}
|
62 |
-
)
|
63 |
|
64 |
-
|
65 |
-
if not user_prompt["files"]:
|
66 |
-
resulting_messages.append(
|
67 |
{
|
68 |
"role": "user",
|
69 |
-
"content": [
|
70 |
-
{"type": "text", "text":
|
71 |
-
],
|
72 |
-
}
|
73 |
-
)
|
74 |
-
else:
|
75 |
-
# Choosing to put the image first (i.e. before the text), but this is an arbiratrary choice.
|
76 |
-
resulting_messages.append(
|
77 |
-
{
|
78 |
-
"role": "user",
|
79 |
-
"content": [{"type": "image"}] * len(user_prompt['files']) + [
|
80 |
-
{"type": "text", "text": user_prompt['text']}
|
81 |
]
|
82 |
}
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
resulting_images.extend([Image.open(im['path'])])
|
91 |
-
|
92 |
-
|
93 |
-
return resulting_messages, resulting_images
|
94 |
-
|
95 |
-
|
96 |
-
def extract_images_from_msg_list(msg_list):
|
97 |
-
all_images = []
|
98 |
-
for msg in msg_list:
|
99 |
-
for c_ in msg["content"]:
|
100 |
-
if isinstance(c_, Image.Image):
|
101 |
-
all_images.append(c_)
|
102 |
-
return all_images
|
103 |
-
|
104 |
-
@spaces.GPU(duration=180)
|
105 |
-
def model_inference(
|
106 |
-
user_prompt,
|
107 |
-
chat_history,
|
108 |
-
decoding_strategy,
|
109 |
-
temperature,
|
110 |
-
max_new_tokens,
|
111 |
-
repetition_penalty,
|
112 |
-
top_p,
|
113 |
-
):
|
114 |
-
if user_prompt["text"].strip() == "" and not user_prompt["files"]:
|
115 |
-
gr.Error("Please input a query and optionally image(s).")
|
116 |
-
|
117 |
-
if user_prompt["text"].strip() == "" and user_prompt["files"]:
|
118 |
-
gr.Error("Please input a text query along the image(s).")
|
119 |
-
|
120 |
-
|
121 |
-
streamer = TextIteratorStreamer(
|
122 |
-
PROCESSOR.tokenizer,
|
123 |
-
skip_prompt=True,
|
124 |
-
timeout=5.,
|
125 |
-
)
|
126 |
-
|
127 |
-
# Common parameters to all decoding strategies
|
128 |
-
# This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
|
129 |
generation_args = {
|
130 |
"max_new_tokens": max_new_tokens,
|
131 |
"repetition_penalty": repetition_penalty,
|
132 |
-
|
133 |
}
|
134 |
|
135 |
assert decoding_strategy in [
|
@@ -143,133 +59,122 @@ def model_inference(
|
|
143 |
generation_args["do_sample"] = True
|
144 |
generation_args["top_p"] = top_p
|
145 |
|
146 |
-
|
147 |
-
resulting_text, resulting_images = format_user_prompt_with_im_history_and_system_conditioning(
|
148 |
-
user_prompt=user_prompt,
|
149 |
-
chat_history=chat_history,
|
150 |
-
)
|
151 |
-
prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
|
152 |
-
inputs = PROCESSOR(text=prompt, images=resulting_images if resulting_images else None, return_tensors="pt")
|
153 |
-
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
154 |
generation_args.update(inputs)
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
)
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
)
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
[
|
263 |
-
|
264 |
-
[{"text": "Can you tell me a very short story based on this image?", "files":["./example_images/chicken_on_money.png"]}],
|
265 |
-
[{"text": "Where is this pastry from?", "files":["./example_images/baklava.png"]}],
|
266 |
-
[{"text": "How much percent is the order status?", "files":["./example_images/dummy_pdf.png"]}],
|
267 |
-
[{"text":"As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.", "files":["./example_images/art_critic.png"]}]
|
268 |
],
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
|
275 |
demo.launch(debug=True)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, Idefics2ForConditionalGeneration
|
|
|
3 |
import re
|
4 |
+
import time
|
5 |
from PIL import Image
|
6 |
import torch
|
7 |
import spaces
|
|
|
9 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
|
11 |
|
12 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b")
|
13 |
|
14 |
model = Idefics2ForConditionalGeneration.from_pretrained(
|
15 |
"HuggingFaceM4/idefics2-8b",
|
|
|
17 |
_attn_implementation="flash_attention_2",
|
18 |
trust_remote_code=True).to("cuda")
|
19 |
|
20 |
+
@spaces.GPU
|
21 |
+
def model_inference(
|
22 |
+
image, text, decoding_strategy, temperature,
|
23 |
+
max_new_tokens, repetition_penalty, top_p
|
|
|
|
|
24 |
):
|
25 |
+
if text == "" and not image:
|
26 |
+
gr.Error("Please input a query and optionally image(s).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
if text == "" and image:
|
29 |
+
gr.Error("Please input a text query along the image(s).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
resulting_messages = [
|
|
|
|
|
32 |
{
|
33 |
"role": "user",
|
34 |
+
"content": [{"type": "image"}] + [
|
35 |
+
{"type": "text", "text": text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
]
|
37 |
}
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
42 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
43 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
44 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
generation_args = {
|
46 |
"max_new_tokens": max_new_tokens,
|
47 |
"repetition_penalty": repetition_penalty,
|
48 |
+
|
49 |
}
|
50 |
|
51 |
assert decoding_strategy in [
|
|
|
59 |
generation_args["do_sample"] = True
|
60 |
generation_args["top_p"] = top_p
|
61 |
|
62 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
generation_args.update(inputs)
|
64 |
|
65 |
+
# Generate
|
66 |
+
generated_ids = model.generate(**generation_args)
|
67 |
+
|
68 |
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
69 |
+
print(generated_texts)
|
70 |
+
pattern = r"Assistant: (.*)"
|
71 |
+
|
72 |
+
# Use regular expression to find the desired part
|
73 |
+
result = re.search(pattern, generated_texts[0]).group(1)
|
74 |
+
|
75 |
+
return result[:-1]
|
76 |
+
|
77 |
+
|
78 |
+
with gr.Blocks(fill_height=True) as demo:
|
79 |
+
gr.Markdown("## IDEFICS2 Instruction 🐶")
|
80 |
+
gr.Markdown("Play with fine-tuned [IDEFICS2](https://huggingface.co/HuggingFaceM4/idefics2-8b) in this demo. To get started, upload an image and text or try one of the examples.")
|
81 |
+
gr.Markdown("**Important note**: This model is not made for chatting, the chatty IDEFICS2 will be released in the upcoming days. **This model is very strong on various tasks, including visual question answering, document retrieval and more.**")
|
82 |
+
gr.Markdown("Learn more about IDEFICS2 in this [blog post](https://huggingface.co/blog/idefics2).")
|
83 |
+
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
image_input = gr.Image(label="Upload your Image", type="pil")
|
87 |
+
query_input = gr.Textbox(label="Prompt")
|
88 |
+
submit_btn = gr.Button("Submit")
|
89 |
+
|
90 |
+
with gr.Column():
|
91 |
+
|
92 |
+
output = gr.Textbox(label="Output")
|
93 |
+
|
94 |
+
with gr.Accordion():
|
95 |
+
# Hyper-parameters for generation
|
96 |
+
max_new_tokens = gr.Slider(
|
97 |
+
minimum=8,
|
98 |
+
maximum=1024,
|
99 |
+
value=512,
|
100 |
+
step=1,
|
101 |
+
interactive=True,
|
102 |
+
label="Maximum number of new tokens to generate",
|
103 |
+
)
|
104 |
+
repetition_penalty = gr.Slider(
|
105 |
+
minimum=0.01,
|
106 |
+
maximum=5.0,
|
107 |
+
value=1.2,
|
108 |
+
step=0.01,
|
109 |
+
interactive=True,
|
110 |
+
label="Repetition penalty",
|
111 |
+
info="1.0 is equivalent to no penalty",
|
112 |
+
)
|
113 |
+
temperature = gr.Slider(
|
114 |
+
minimum=0.0,
|
115 |
+
maximum=5.0,
|
116 |
+
value=0.4,
|
117 |
+
step=0.1,
|
118 |
+
interactive=True,
|
119 |
+
label="Sampling temperature",
|
120 |
+
info="Higher values will produce more diverse outputs.",
|
121 |
+
)
|
122 |
+
top_p = gr.Slider(
|
123 |
+
minimum=0.01,
|
124 |
+
maximum=0.99,
|
125 |
+
value=0.8,
|
126 |
+
step=0.01,
|
127 |
+
interactive=True,
|
128 |
+
label="Top P",
|
129 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
130 |
+
)
|
131 |
+
decoding_strategy = gr.Radio(
|
132 |
+
[
|
133 |
+
"Greedy",
|
134 |
+
"Top P Sampling",
|
135 |
+
],
|
136 |
+
value="Greedy",
|
137 |
+
label="Decoding strategy",
|
138 |
+
interactive=True,
|
139 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
140 |
+
)
|
141 |
+
decoding_strategy.change(
|
142 |
+
fn=lambda selection: gr.Slider(
|
143 |
+
visible=(
|
144 |
+
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
|
145 |
+
)
|
146 |
+
),
|
147 |
+
inputs=decoding_strategy,
|
148 |
+
outputs=temperature,
|
149 |
+
)
|
150 |
+
|
151 |
+
decoding_strategy.change(
|
152 |
+
fn=lambda selection: gr.Slider(
|
153 |
+
visible=(
|
154 |
+
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
|
155 |
+
)
|
156 |
+
),
|
157 |
+
inputs=decoding_strategy,
|
158 |
+
outputs=repetition_penalty,
|
159 |
+
)
|
160 |
+
decoding_strategy.change(
|
161 |
+
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
|
162 |
+
inputs=decoding_strategy,
|
163 |
+
outputs=top_p,
|
164 |
+
)
|
165 |
+
examples=[["./example_images/docvqa_example.png", "How many items are sold?", "Greedy", 0.4, 512, 1.2, 0.8],
|
166 |
+
["./example_images/s2w_example.png", "What is this UI about?", "Greedy", 0.4, 512, 1.2, 0.8],
|
167 |
+
["./example_images/example_images_travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", 0.4, 512, 1.2, 0.8],
|
168 |
+
["./example_images/chicken_on_money.png", "Can you tell me a very short story based on this image?", 0.4, 512, 1.2, 0.8],
|
169 |
+
["./example_images/baklava.png", "Where is this pastry from?", 0.4, 512, 1.2, 0.8],
|
170 |
+
["./example_images/dummy_pdf.png", "How much percent is the order status?", 0.4, 512, 1.2, 0.8],
|
171 |
+
["./example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.",
|
172 |
+
0.4, 512, 1.2, 0.8]]
|
|
|
|
|
|
|
|
|
173 |
],
|
174 |
+
|
175 |
+
submit_btn.click(model_inference, inputs = [image_input, query_input, decoding_strategy, temperature,
|
176 |
+
max_new_tokens, repetition_penalty, top_p],
|
177 |
+
outputs=output)
|
178 |
+
|
179 |
|
180 |
demo.launch(debug=True)
|