|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for seq2seq, text to image. |
|
Script adapted from run_summarization_flax.py |
|
""" |
|
|
|
import json |
|
import logging |
|
import os |
|
import sys |
|
import time |
|
from dataclasses import asdict, dataclass, field |
|
from pathlib import Path |
|
from typing import Callable, Optional |
|
|
|
import datasets |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
import transformers |
|
import wandb |
|
from datasets import Dataset |
|
from distributed_shampoo import GraftingType, distributed_shampoo |
|
from flax.core.frozen_dict import freeze, unfreeze |
|
from flax.serialization import from_bytes, to_bytes |
|
from flax.training import train_state |
|
from flax.training.common_utils import onehot, stack_forest |
|
from jax.experimental import PartitionSpec, maps |
|
from jax.experimental.pjit import pjit |
|
from tqdm import tqdm |
|
from transformers import HfArgumentParser |
|
|
|
from dalle_mini.data import Dataset |
|
from dalle_mini.model import ( |
|
DalleBart, |
|
DalleBartConfig, |
|
DalleBartTokenizer, |
|
set_partitions, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The model checkpoint for weights initialization. " |
|
"Don't set if you want to train a model from scratch. " |
|
"W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." |
|
}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Pretrained config name or path if not the same as model_name_or_path" |
|
}, |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Pretrained tokenizer name or path if not the same as model_name_or_path" |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
text_column: Optional[str] = field( |
|
default="caption", |
|
metadata={ |
|
"help": "The name of the column in the datasets containing the full texts (for summarization)." |
|
}, |
|
) |
|
encoding_column: Optional[str] = field( |
|
default="encoding", |
|
metadata={ |
|
"help": "The name of the column in the datasets containing the image encodings." |
|
}, |
|
) |
|
dataset_repo_or_path: str = field( |
|
default=None, |
|
metadata={"help": "The dataset repository containing encoded files."}, |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The input training data file (glob & braceexpand acceptable)." |
|
}, |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "An optional input evaluation data file (glob & braceexpand acceptable)." |
|
}, |
|
) |
|
|
|
streaming: Optional[bool] = field( |
|
default=True, |
|
metadata={"help": "Whether to stream the dataset."}, |
|
) |
|
use_auth_token: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to use the authentication token for private datasets." |
|
}, |
|
) |
|
shard_by_host: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to shard data files by host in multi-host environments." |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples." |
|
}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The number of processes to use for the preprocessing. Not used in streaming mode." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Overwrite the cached training and evaluation sets. Not used in streaming mode." |
|
}, |
|
) |
|
|
|
seed_dataset: int = field( |
|
default=None, |
|
metadata={ |
|
"help": "Random seed for the dataset that will be set at the beginning of training." |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_repo_or_path is None: |
|
raise ValueError("Need a dataset repository or path.") |
|
|
|
|
|
@dataclass |
|
class TrainingArguments: |
|
""" |
|
Arguments pertaining to training parameters. |
|
""" |
|
|
|
output_dir: str = field( |
|
metadata={ |
|
"help": "The output directory where the model predictions and checkpoints will be written." |
|
}, |
|
) |
|
overwrite_output_dir: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Overwrite the content of the output directory. " |
|
"Use this to continue training if output_dir points to a checkpoint directory." |
|
) |
|
}, |
|
) |
|
|
|
do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) |
|
do_eval: bool = field( |
|
default=False, metadata={"help": "Whether to run eval on the validation set."} |
|
) |
|
|
|
per_device_train_batch_size: int = field( |
|
default=8, metadata={"help": "Batch size per GPU/TPU/CPU for training."} |
|
) |
|
per_device_eval_batch_size: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Batch size per GPU/TPU/CPU for evaluation. Same as training batch size if not set." |
|
}, |
|
) |
|
|
|
gradient_accumulation_steps: int = field( |
|
default=1, |
|
metadata={ |
|
"help": "Number of updates steps to accumulate before performing an update pass." |
|
}, |
|
) |
|
|
|
learning_rate: float = field( |
|
default=5e-5, metadata={"help": "The initial learning rate."} |
|
) |
|
optim: str = field( |
|
default="distributed_shampoo", |
|
metadata={ |
|
"help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' |
|
}, |
|
) |
|
beta1: float = field( |
|
default=0.9, |
|
metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, |
|
) |
|
beta2: float = field( |
|
default=0.999, |
|
metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, |
|
) |
|
adam_epsilon: float = field( |
|
default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} |
|
) |
|
max_grad_norm: float = field( |
|
default=1.0, metadata={"help": "Max gradient norm for Adafactor."} |
|
) |
|
block_size: int = field( |
|
default=1024, |
|
metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, |
|
) |
|
preconditioning_compute_steps: int = field( |
|
default=10, metadata={"help": "Number of steps to update preconditioner."} |
|
) |
|
skip_preconditioning_dim_size_gt: int = field( |
|
default=4096, |
|
metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, |
|
) |
|
optim_quantized: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." |
|
}, |
|
) |
|
|
|
num_train_epochs: int = field( |
|
default=3, metadata={"help": "Total number of training epochs to perform."} |
|
) |
|
|
|
warmup_steps: int = field( |
|
default=0, metadata={"help": "Linear warmup over warmup_steps."} |
|
) |
|
lr_decay: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." |
|
}, |
|
) |
|
lr_transition_steps: int = field( |
|
default=None, |
|
metadata={ |
|
"help": "Number of transition steps associated with learning rate decay when using exponential decay." |
|
}, |
|
) |
|
lr_decay_rate: float = field( |
|
default=None, |
|
metadata={ |
|
"help": "Decay rate associated with learning rate when using exponential decay." |
|
}, |
|
) |
|
lr_staircase: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to use staircase or continuous learning rate when using exponential decay." |
|
}, |
|
) |
|
|
|
logging_steps: int = field( |
|
default=40, metadata={"help": "Log every X updates steps."} |
|
) |
|
eval_steps: int = field( |
|
default=400, metadata={"help": "Run an evaluation every X steps."} |
|
) |
|
save_steps: int = field( |
|
default=4000, metadata={"help": "Save checkpoint every X updates steps."} |
|
) |
|
log_model: bool = field( |
|
default=False, |
|
metadata={"help": "Log model to wandb at `save_steps` frequency."}, |
|
) |
|
|
|
seed_model: int = field( |
|
default=42, |
|
metadata={ |
|
"help": "Random seed for the model that will be set at the beginning of training." |
|
}, |
|
) |
|
|
|
resume_from_checkpoint: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Reference to a wandb artifact for resuming training."}, |
|
) |
|
|
|
wandb_entity: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The wandb entity to use (for teams)."}, |
|
) |
|
wandb_project: str = field( |
|
default="dalle-mini", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
wandb_job_type: str = field( |
|
default="Seq2Seq", |
|
metadata={"help": "The name of the wandb job type."}, |
|
) |
|
|
|
assert_TPU_available: bool = field( |
|
default=False, |
|
metadata={"help": "Verify that TPU is not in use."}, |
|
) |
|
|
|
mp_devices: Optional[int] = field( |
|
default=1, |
|
metadata={ |
|
"help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism." |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
assert self.optim in [ |
|
"distributed_shampoo", |
|
"adam", |
|
"adafactor", |
|
], f"Selected optimizer not supported: {self.optim}" |
|
if self.per_device_eval_batch_size is None: |
|
self.per_device_eval_batch_size = self.per_device_train_batch_size |
|
if ( |
|
os.path.exists(self.output_dir) |
|
and os.listdir(self.output_dir) |
|
and self.do_train |
|
and not self.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({self.output_dir}) already exists and is not empty." |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
assert ( |
|
jax.device_count() % self.mp_devices == 0 |
|
), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." |
|
self.dp_devices = jax.device_count() // self.mp_devices |
|
|
|
|
|
class TrainState(train_state.TrainState): |
|
dropout_rng: jnp.ndarray = None |
|
epoch: int = 0 |
|
train_time: float = 0.0 |
|
train_samples: int = 0 |
|
|
|
|
|
class MetricsLogger: |
|
def __init__(self, state): |
|
self.step = state.step |
|
self.time = time.perf_counter() |
|
|
|
def get_all_train_metrics(self, train_metrics, state): |
|
"""Make a dict of training metrics to be logged""" |
|
metrics = train_metrics |
|
|
|
state_dict = { |
|
k.split("_")[-1]: getattr(state, k) |
|
for k in ["epoch", "train_time", "train_samples"] |
|
} |
|
|
|
new_step = int(state.step) |
|
new_time = time.perf_counter() |
|
if new_step > self.step: |
|
time_per_step = (new_time - self.time) / (new_step - self.step) |
|
self.step = new_step |
|
self.time = new_time |
|
state_dict["time_per_step"] = time_per_step |
|
return {**metrics, **state_dict} |
|
|
|
@staticmethod |
|
def log(metrics, step=None, prefix=None): |
|
if jax.process_index() == 0: |
|
log_metrics = { |
|
f"{prefix}/{k}" if prefix is not None else k: v |
|
for k, v in metrics.items() |
|
} |
|
if step is not None: |
|
log_metrics["train/step"] = step |
|
wandb.log(log_metrics) |
|
|
|
|
|
def main(): |
|
|
|
parser = HfArgumentParser( |
|
(ModelArguments, DataTrainingArguments, TrainingArguments) |
|
) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file( |
|
json_file=os.path.abspath(sys.argv[1]) |
|
) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
dataset = Dataset( |
|
**asdict(data_args), |
|
do_train=training_args.do_train, |
|
do_eval=training_args.do_eval, |
|
) |
|
|
|
logger.info(f"Local TPUs: {jax.local_device_count()}") |
|
logger.info(f"Global TPUs: {jax.device_count()}") |
|
if training_args.assert_TPU_available: |
|
assert ( |
|
jax.local_device_count() == 8 |
|
), "TPUs in use, please check running processes" |
|
|
|
|
|
if jax.process_index() == 0: |
|
wandb.init( |
|
entity=training_args.wandb_entity, |
|
project=training_args.wandb_project, |
|
job_type=training_args.wandb_job_type, |
|
config=parser.parse_args(), |
|
) |
|
|
|
if training_args.resume_from_checkpoint is not None: |
|
if jax.process_index() == 0: |
|
artifact = wandb.run.use_artifact(training_args.resume_from_checkpoint) |
|
else: |
|
artifact = wandb.Api().artifact(training_args.resume_from_checkpoint) |
|
artifact_dir = artifact.download() |
|
|
|
|
|
model = DalleBart.from_pretrained( |
|
artifact_dir, |
|
dtype=getattr(jnp, model_args.dtype), |
|
abstract_init=True, |
|
load_on_cpu=True, |
|
) |
|
|
|
|
|
tokenizer = DalleBartTokenizer.from_pretrained( |
|
artifact_dir, |
|
use_fast=True, |
|
) |
|
|
|
else: |
|
|
|
if model_args.config_name: |
|
config = DalleBartConfig.from_pretrained(model_args.config_name) |
|
else: |
|
config = None |
|
|
|
|
|
if model_args.model_name_or_path: |
|
model = DalleBart.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
seed=training_args.seed_model, |
|
dtype=getattr(jnp, model_args.dtype), |
|
abstract_init=True, |
|
load_on_cpu=True, |
|
) |
|
else: |
|
model = DalleBart( |
|
config, |
|
seed=training_args.seed_model, |
|
dtype=getattr(jnp, model_args.dtype), |
|
load_on_cpu=True, |
|
) |
|
|
|
|
|
if model_args.tokenizer_name is not None: |
|
tokenizer = DalleBartTokenizer.from_pretrained( |
|
model_args.tokenizer_name, use_fast=True |
|
) |
|
else: |
|
tokenizer = DalleBartTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
use_fast=True, |
|
) |
|
|
|
|
|
|
|
|
|
dataset.preprocess( |
|
tokenizer=tokenizer, |
|
decoder_start_token_id=model.config.decoder_start_token_id, |
|
normalize_text=model.config.normalize_text, |
|
max_length=model.config.max_text_length, |
|
) |
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed_model) |
|
rng, dropout_rng = jax.random.split(rng) |
|
|
|
|
|
num_epochs = training_args.num_train_epochs |
|
|
|
train_batch_size = ( |
|
training_args.per_device_train_batch_size * jax.local_device_count() |
|
) |
|
batch_size_per_node = train_batch_size * training_args.gradient_accumulation_steps |
|
batch_size_per_step = batch_size_per_node * jax.process_count() |
|
eval_batch_size = ( |
|
training_args.per_device_eval_batch_size * jax.local_device_count() |
|
) |
|
len_train_dataset, len_eval_dataset = dataset.length |
|
steps_per_epoch = ( |
|
len_train_dataset // batch_size_per_node |
|
if len_train_dataset is not None |
|
else None |
|
) |
|
num_train_steps = ( |
|
steps_per_epoch * num_epochs if steps_per_epoch is not None else None |
|
) |
|
num_params = model.num_params |
|
|
|
|
|
def create_learning_rate_fn() -> Callable[[int], jnp.array]: |
|
"""Create the learning rate function.""" |
|
warmup_fn = optax.linear_schedule( |
|
init_value=0.0, |
|
end_value=training_args.learning_rate, |
|
transition_steps=training_args.warmup_steps, |
|
) |
|
if training_args.lr_decay is None: |
|
return warmup_fn |
|
elif training_args.lr_decay == "linear": |
|
assert ( |
|
num_train_steps is not None |
|
), "linear decay requires knowing the dataset length" |
|
decay_fn = optax.linear_schedule( |
|
init_value=training_args.learning_rate, |
|
end_value=0, |
|
transition_steps=num_train_steps - training_args.warmup_steps, |
|
) |
|
elif training_args.lr_decay == "exponential": |
|
decay_fn = optax.exponential_decay( |
|
init_value=training_args.learning_rate, |
|
transition_steps=training_args.lr_transition_steps, |
|
decay_rate=training_args.lr_decay_rate, |
|
staircase=training_args.lr_staircase, |
|
) |
|
schedule_fn = optax.join_schedules( |
|
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] |
|
) |
|
return schedule_fn |
|
|
|
learning_rate_fn = create_learning_rate_fn() |
|
|
|
|
|
if training_args.optim == "distributed_shampoo": |
|
|
|
optimizer = distributed_shampoo( |
|
learning_rate_fn, |
|
block_size=training_args.block_size, |
|
beta1=training_args.beta1, |
|
beta2=training_args.beta2, |
|
diagonal_epsilon=1e-10, |
|
matrix_epsilon=1e-8, |
|
start_preconditioning_step=training_args.warmup_steps, |
|
preconditioning_compute_steps=training_args.preconditioning_compute_steps, |
|
statistics_compute_steps=1, |
|
best_effort_shape_interpretation=True, |
|
graft_type=GraftingType.RMSPROP_NORMALIZED, |
|
nesterov=False, |
|
exponent_override=0, |
|
statistics_partition_spec=PartitionSpec(None, "batch", None), |
|
preconditioner_partition_spec=PartitionSpec("batch", None, None), |
|
num_devices_for_pjit=training_args.dp_devices, |
|
shard_optimizer_states=True, |
|
inverse_failure_threshold=0.1, |
|
moving_average_for_momentum=True, |
|
skip_preconditioning_dim_size_gt=training_args.skip_preconditioning_dim_size_gt, |
|
clip_by_scaled_gradient_norm=None, |
|
precision=jax.lax.Precision.HIGHEST, |
|
best_effort_memory_usage_reduction=training_args.optim_quantized, |
|
) |
|
|
|
elif training_args.optim == "adam": |
|
optimizer = optax.adamw( |
|
learning_rate=learning_rate_fn, |
|
b1=training_args.beta1, |
|
b2=training_args.beta2, |
|
eps=training_args.adam_epsilon, |
|
) |
|
elif training_args.optim == "adafactor": |
|
|
|
|
|
optimizer = optax.adafactor( |
|
learning_rate=learning_rate_fn, |
|
clipping_threshold=training_args.max_grad_norm, |
|
) |
|
|
|
|
|
param_spec = set_partitions(model.params) |
|
|
|
|
|
def get_opt_state_spec_and_shape(param_spec): |
|
if training_args.optim == "adam": |
|
|
|
opt_state_shape = jax.eval_shape(optimizer.init, model.params) |
|
|
|
def _opt_state_spec_per_leaf(x): |
|
if isinstance(x, dict): |
|
|
|
return param_spec |
|
else: |
|
|
|
return None |
|
|
|
opt_state_spec = jax.tree_map( |
|
_opt_state_spec_per_leaf, |
|
opt_state_shape, |
|
|
|
is_leaf=lambda x: isinstance(x, (dict, optax.EmptyState)), |
|
) |
|
|
|
elif training_args.optim == "adafactor": |
|
|
|
opt_state_spec = None |
|
|
|
elif training_args.optim == "distributed_shampoo": |
|
|
|
_opt_state = optimizer.init(model.params) |
|
opt_state_spec = _opt_state.pspec_fn( |
|
params=model.params, |
|
params_partition_spec=unfreeze(param_spec), |
|
partition_spec_for_statistics=PartitionSpec(None, "batch", None), |
|
) |
|
opt_state_shape = _opt_state.shape_and_dtype_fn(model.params) |
|
else: |
|
raise NotImplementedError |
|
return opt_state_spec, opt_state_shape |
|
|
|
opt_state_spec, opt_state_shape = get_opt_state_spec_and_shape(param_spec) |
|
|
|
|
|
mesh_shape = (training_args.dp_devices, training_args.mp_devices) |
|
devices = np.asarray(jax.devices()).reshape(*mesh_shape) |
|
mesh = maps.Mesh(devices, ("batch", "mp")) |
|
|
|
|
|
state_spec = TrainState( |
|
params=param_spec, |
|
opt_state=opt_state_spec, |
|
dropout_rng=None, |
|
step=None, |
|
epoch=None, |
|
train_time=None, |
|
train_samples=None, |
|
apply_fn=model.__call__, |
|
tx=optimizer, |
|
) |
|
|
|
|
|
with maps.mesh(mesh.devices, mesh.axis_names): |
|
if training_args.resume_from_checkpoint is None: |
|
|
|
def init_state(params): |
|
return TrainState.create( |
|
apply_fn=model.__call__, |
|
tx=optimizer, |
|
params=params, |
|
dropout_rng=dropout_rng, |
|
) |
|
|
|
state = pjit( |
|
init_state, |
|
in_axis_resources=(param_spec,), |
|
out_axis_resources=state_spec, |
|
donate_argnums=(0,), |
|
)(freeze(model.params)) |
|
|
|
else: |
|
|
|
with (Path(artifact_dir) / "opt_state.msgpack").open("rb") as f: |
|
opt_state = from_bytes(opt_state_shape, f.read()) |
|
|
|
opt_state = jax.tree_map( |
|
lambda x: freeze(x) if isinstance(x, dict) else x, |
|
opt_state, |
|
is_leaf=lambda x: isinstance(x, (dict, optax.EmptyState)), |
|
) |
|
|
|
|
|
with (Path(artifact_dir) / "training_state.json").open("r") as f: |
|
attr_state = json.load(f) |
|
|
|
def restore_state(params, opt_state): |
|
return TrainState( |
|
apply_fn=model.__call__, |
|
tx=optimizer, |
|
params=params, |
|
opt_state=opt_state, |
|
dropout_rng=dropout_rng, |
|
**attr_state, |
|
) |
|
|
|
state = pjit( |
|
restore_state, |
|
in_axis_resources=(param_spec, opt_state_spec), |
|
out_axis_resources=state_spec, |
|
donate_argnums=(0, 1), |
|
)(freeze(model.params), opt_state) |
|
|
|
|
|
del opt_state |
|
|
|
|
|
del model._params |
|
|
|
|
|
def loss_fn(logits, labels): |
|
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) |
|
loss = loss.mean() |
|
return loss |
|
|
|
|
|
def train_step(state, batch, delta_time): |
|
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) |
|
|
|
dropout_rng = jax.random.fold_in(dropout_rng, jax.process_index()) |
|
|
|
def compute_loss(params, minibatch): |
|
labels = minibatch.pop("labels") |
|
logits = state.apply_fn( |
|
**minibatch, params=params, dropout_rng=dropout_rng, train=True |
|
)[0] |
|
return loss_fn(logits, labels) |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
|
|
if training_args.gradient_accumulation_steps == 1: |
|
minibatch = jax.tree_map(lambda x: x[0], batch) |
|
loss, grads = grad_fn(state.params, minibatch) |
|
else: |
|
|
|
def _cumul_loss_grads(i, cumul_loss_grads): |
|
minibatch = jax.tree_map(lambda x: x[i], batch) |
|
return jax.tree_map( |
|
lambda x, y: x + y, |
|
cumul_loss_grads, |
|
grad_fn(state.params, minibatch), |
|
) |
|
|
|
init_loss_grads = ( |
|
0.0, |
|
jax.tree_map(jnp.zeros_like, state.params), |
|
) |
|
loss, grads = jax.tree_map( |
|
lambda x: x / training_args.gradient_accumulation_steps, |
|
jax.lax.fori_loop( |
|
0, |
|
training_args.gradient_accumulation_steps, |
|
_cumul_loss_grads, |
|
init_loss_grads, |
|
), |
|
) |
|
|
|
state = state.apply_gradients( |
|
grads=grads, |
|
dropout_rng=new_dropout_rng, |
|
train_time=state.train_time + delta_time, |
|
train_samples=state.train_samples + batch_size_per_step, |
|
) |
|
|
|
metrics = { |
|
"loss": loss, |
|
"learning_rate": learning_rate_fn(state.step), |
|
} |
|
|
|
return state, metrics |
|
|
|
|
|
def eval_step(params, batch): |
|
labels = batch.pop("labels") |
|
logits = model(**batch, params=params, train=False)[0] |
|
loss = loss_fn(logits, labels) |
|
|
|
|
|
metrics = {"loss": loss} |
|
return metrics |
|
|
|
|
|
p_train_step = pjit( |
|
train_step, |
|
in_axis_resources=(state_spec, PartitionSpec("batch", None), None), |
|
out_axis_resources=(state_spec, None), |
|
donate_argnums=(0,), |
|
) |
|
p_eval_step = pjit( |
|
eval_step, |
|
in_axis_resources=(param_spec, PartitionSpec("batch", None)), |
|
out_axis_resources=None, |
|
) |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len_train_dataset}") |
|
logger.info(f" Num Epochs = {num_epochs}") |
|
logger.info( |
|
f" Batch size per device = {training_args.per_device_train_batch_size}" |
|
) |
|
logger.info(f" Number of devices = {jax.device_count()}") |
|
logger.info( |
|
f" Gradient accumulation steps = {training_args.gradient_accumulation_steps}" |
|
) |
|
logger.info(f" Batch size per update = {batch_size_per_step}") |
|
logger.info(f" Model parameters = {num_params:,}") |
|
epochs = tqdm( |
|
range(state.epoch, num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0 |
|
) |
|
|
|
metrics_logger = MetricsLogger(state) |
|
if jax.process_index() == 0: |
|
|
|
metrics_logger.log({}, step=state.step) |
|
wandb.define_metric("*", step_metric="train/step") |
|
|
|
|
|
wandb.config.update( |
|
{ |
|
"len_train_dataset": len_train_dataset, |
|
"len_eval_dataset": len_eval_dataset, |
|
"batch_size_per_step": batch_size_per_step, |
|
"num_params": num_params, |
|
"num_devices": jax.device_count(), |
|
} |
|
) |
|
|
|
def run_evaluation(): |
|
|
|
eval_metrics = [] |
|
if training_args.do_eval: |
|
eval_loader = dataset.dataloader( |
|
"eval", training_args.per_device_eval_batch_size |
|
) |
|
eval_steps = ( |
|
len_eval_dataset // eval_batch_size |
|
if len_eval_dataset is not None |
|
else None |
|
) |
|
for batch in tqdm( |
|
eval_loader, |
|
desc="Evaluating...", |
|
position=2, |
|
leave=False, |
|
total=eval_steps, |
|
): |
|
|
|
metrics = p_eval_step(state.params, batch) |
|
eval_metrics.append(metrics) |
|
|
|
|
|
eval_metrics = stack_forest(eval_metrics) |
|
eval_metrics = jax.tree_map(jnp.mean, eval_metrics) |
|
|
|
|
|
metrics_logger.log(eval_metrics, step=state.step, prefix="eval") |
|
|
|
|
|
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})" |
|
epochs.write(desc) |
|
epochs.desc = desc |
|
|
|
return eval_metrics |
|
|
|
def run_save_model(state, eval_metrics=None): |
|
if jax.process_index() == 0: |
|
params = jax.device_get(state.params) |
|
|
|
model.save_pretrained( |
|
training_args.output_dir, |
|
params=params, |
|
) |
|
|
|
|
|
tokenizer.save_pretrained(training_args.output_dir) |
|
|
|
|
|
opt_state = jax.device_get(state.opt_state) |
|
with (Path(training_args.output_dir) / "opt_state.msgpack").open("wb") as f: |
|
f.write(to_bytes(opt_state)) |
|
state_dict = { |
|
k: jax.device_get(getattr(state, k)).item() |
|
for k in ["step", "epoch", "train_time", "train_samples"] |
|
} |
|
with (Path(training_args.output_dir) / "training_state.json").open( |
|
"w" |
|
) as f: |
|
json.dump( |
|
state_dict, |
|
f, |
|
) |
|
|
|
if jax.process_index() == 0: |
|
|
|
if training_args.log_model: |
|
|
|
c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache() |
|
c.cleanup(wandb.util.from_human_size("10GB")) |
|
|
|
metadata = dict(state_dict) |
|
metadata["num_params"] = num_params |
|
if eval_metrics is not None: |
|
metadata["eval"] = eval_metrics |
|
artifact = wandb.Artifact( |
|
name=f"model-{wandb.run.id}", |
|
type="bart_model", |
|
metadata=metadata, |
|
) |
|
artifact.add_file( |
|
str(Path(training_args.output_dir) / "flax_model.msgpack") |
|
) |
|
artifact.add_file( |
|
str(Path(training_args.output_dir) / "config.json") |
|
) |
|
artifact.add_file( |
|
str(Path(training_args.output_dir) / "tokenizer.json") |
|
) |
|
artifact.add_file( |
|
str(Path(training_args.output_dir) / "tokenizer_config.json") |
|
) |
|
artifact.add_file( |
|
str(Path(training_args.output_dir) / "vocab.json") |
|
) |
|
artifact.add_file( |
|
str(Path(training_args.output_dir) / "merges.txt") |
|
) |
|
artifact.add_file( |
|
str(Path(training_args.output_dir) / "special_tokens_map.json") |
|
) |
|
artifact.add_file( |
|
str(Path(training_args.output_dir) / "opt_state.msgpack") |
|
) |
|
artifact.add_file( |
|
str(Path(training_args.output_dir) / "training_state.json") |
|
) |
|
|
|
wandb.run.log_artifact(artifact) |
|
|
|
|
|
last_time = time.perf_counter() |
|
train_metrics = None |
|
|
|
with maps.mesh(mesh.devices, mesh.axis_names): |
|
for epoch in epochs: |
|
state.replace(epoch=epoch) |
|
|
|
metrics_logger.log({"train/epoch": epoch}, step=state.step) |
|
|
|
|
|
train_loader = dataset.dataloader( |
|
"train", |
|
training_args.per_device_train_batch_size, |
|
training_args.gradient_accumulation_steps, |
|
epoch, |
|
) |
|
|
|
for batch in tqdm( |
|
train_loader, |
|
desc="Training...", |
|
position=1, |
|
leave=False, |
|
total=steps_per_epoch, |
|
): |
|
|
|
|
|
new_time = time.perf_counter() |
|
delta_time = new_time - last_time |
|
last_time = new_time |
|
|
|
|
|
state, train_metrics = p_train_step(state, batch, delta_time) |
|
step = state.step |
|
|
|
if step % training_args.logging_steps == 0 and jax.process_index() == 0: |
|
all_metrics = metrics_logger.get_all_train_metrics( |
|
train_metrics, state |
|
) |
|
metrics_logger.log(all_metrics, step=step, prefix="train") |
|
|
|
eval_metrics = None |
|
if training_args.eval_steps and step % training_args.eval_steps == 0: |
|
eval_metrics = run_evaluation() |
|
|
|
if step % training_args.save_steps == 0: |
|
run_save_model(state, eval_metrics) |
|
|
|
|
|
if train_metrics is not None: |
|
all_metrics = metrics_logger.get_all_train_metrics(train_metrics, state) |
|
metrics_logger.log(all_metrics, step=step, prefix="train") |
|
|
|
epochs.write( |
|
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metrics['loss']}, Learning Rate: {train_metrics['learning_rate']})" |
|
) |
|
|
|
|
|
eval_metrics = run_evaluation() |
|
|
|
|
|
run_save_model(state, eval_metrics) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|